Category Archives: Aritmetica

Compiti per l’11 maggio – prima C

Una animazione

factor_clock

Osserva l’animazione riportata in questo sito.

È molto lunga: non è necessario che la guardi tutta (anche se potrebbe essere carino scoprire fin dove arriva!).

È però necessario che la guardi con estrema attenzione e che cerchi di rispondere a questa domanda: che cosa vorrà rappresentare questa animazione?

Compiti per il 31 marzo – prima C

Gli ordini di grandezza

Come compito per giovedì 31 marzo vi chiedo tre cose:

  1. leggere con estrema attenzione la pagina A228 del vostro libro di testo;
  2. guardare con estrema attenzione il video Powers of ten incorporato in questo articolo;
  3. guardare con estrema attenzione il video interattivo The scale of the universe seguendo il link che troverete in fondo a questo articolo.

Giovedì discuteremo insieme di questi video, delle sensazioni che hanno suscitato in voi e degli aspetti matematici in essi contenuti che ancora non vi sono noti (li trovate?)

Powers of ten

Questo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

The scale of the universe

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Compiti per il 10 marzo – prima C

In classe vi ho raccontato la storia del re malinconico e dell’inventore degli scacchi: qui la riporto così come è scritta nel libro L’uomo che sapeva contare, di Malba Tahan. Leggete questo brano e poi guardate con attenzione il video che rappresenta i chicchi di grano che sarebbero stati necessari per soddisfare la richiesta dell’inventore degli scacchi.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo questeparole, Re Iadava esclamò: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane, insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia, ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Potenze

In questo articolo ho raccolto link ad alcuni video che illustrano in modo potentissimo il concetto di potenza…

Il primo video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahan.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Il secondo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Se l’aritmetica fosse una costruzione LEGO

Scomposizione dei numeri composti fino a 60 in mattoncini LEGO

Con i numeri primi si possono costruire tutti i numeri composti (ossia tutti i numeri naturali che non siano primi, esclusi lo 0 e l’1). Da qui all’idea che i numeri primi siano come i mattoncini LEGO dell’aritmetica la strada è breve.

Nel documento allegato ho unito un’idea della maestra Rita Bartole (La Ritabella) con un’idea del professor Paolo Dall’Aglio (Fattorizzazioni con i LEGO): spero che possa essere utile almeno a qualcuni dei miei alunni!

Se rappresentiamo ogni numero primo con un mattoncino LEGO di un colore diverso, i numeri composti diventano torri coloratissime...
Titolo: I numeri primi sono i mattoncini LEGO dell'aritmetica (0 click)
Etichetta: Se rappresentiamo ogni numero primo con un mattoncino LEGO di un colore diverso, i numeri composti diventano torri coloratissime...
Filename: lego_primi-2.pdf
Dimensione: 286 KB

 

Abaco romano

Calcoli e sassolini

La parola calcolo (che noi oggi usiamo nel senso di conto, di operazione tra numeri) deriva dal Latino “calculus” che significa “sassolino”.

I Romani infatti, per fare i conti, si servivano di una tavoletta di argilla sulla quale erano scavate alcune scanalature. In queste scanalature inserivano alcuni sassolini, il cui valore dipendeva dalla scanalatura in cui venivano posti.

Abaco romano

Abaco romano

Costruiamo un abaco con materiali di recupero

Materiale necessario:

  • due tubi di carta cucina;
  • del nastro adesivo e un paio di forbici;
  • un cartoncino (va bene anche una scatola della pasta o dei cereali finiti).

Decoriamo l’abaco

Chi da solo chi con l’aiuto dei propri genitori, alcuni di noi, a casa, hanno perfezionato o decorato l’abaco, ottenendo dei bellissimi risultati. C’è stato anche chi, invece di fagioli o pasta, ha portato dei veri sassolini!

Rappresentiamo qualche numero

Lo scopo di tutto questo lavoro non era solo divertirsi, ma anche toccare con mano le difficoltà che dovevano avere i poveri Romani per fare i calcoli.

Abbiamo imparato a rappresentare i numeri nell’abaco romano e ci siamo accorti subito di una difficoltà: mentre nella scrittura il sistema di numerazione romano è essenzialmente additivo ma anche (per così dire) “sottrattivo”, nell’abaco i valori dei sassolini si sommano e basta. Quindi non sempre c’è un’esatta corrispondenza tra il numero scritto e il numero rappresentato.

Abbiamo anche imparato a fare le somme con l’abaco romano; grosse difficoltà non le abbiamo incontrate (perché siamo tutti bravi e svegli), però ci siamo accorti che i riporti sono più difficili di quelli che facciamo abitualmente. Nell’abaco romani infatti ci sono due tipi diversi di riporti (cinque sassolini nelle scanalature in basso diventano uno solo nelle scanalature in alto, ma due sassolini nelle scanalature in alto diventano uno solo nelle scanalature in basso a sinistra).