Category Archives: Geometria

Compiti 2aC per il 3-12-19

Misura dell’area di figure su carta a quadretti

Copia le seguenti figure sul tuo quaderno, contando i quadretti.

Misura l’area delle figure da te disegnate sul quaderno, usando come unità di misura il centimetro quadrato (cm2), come abbiamo fatto in classe venerdì 29 novembre.

Poligoni disegnati su carta a quadretti

 

Compiti 2aC per il 27-11-19

Altezze e ortocentro di un triangolo su carta a quadretti

Disegna sul tuo quaderno dei triangoli “uguali” a questi. Come in classe quando copi dalla lavagna, per “uguali” si intende qui che abbiano la stessa forma, anche se (ovviamente) le dimensioni saranno diverse. Un quadretto dei disegni qui sotto riportati deve essere considerato “uguale” a un quadretto del tuo quaderno.

Disegnato il triangolo, disegna le sue altezze e trova il suo ortocentro, usando (come strumenti da disegno) una matita ben appuntita, una riga (anche un pezzo di cartoncino rigido va bene) e la carta a quadretti.

Se non ricordi più come fare, puoi guardare il videotutorial incorporato più sotto. Attento, però: il triangolo disegnato nel videotutorial non ha i lati inclinati nello stesso modo di quelli del triangolo che ti è stato assegnato. Cerca quindi (guardando il videotutorial e ripassando la lezione svolta in classe lunedì 18 novembre) di capire qual è il procedimento da seguire e poi di applicarlo al triangolo che è qui disegnato.

Triangoli disegnati su carta a quadretti

Per ripassare…

Compiti 2aC per il 26-11-19

Mediane e baricentro

Costruisci con GeoGebra un triangolo, le sue mediane e il suo baricentro.

Puoi seguire, se ti serve, questo videotutorial:

Compiti 2aC per il 25-11-19

Altezze e ortocentro di un triangolo

Disegna, con GeoGebra, un triangolo e le altezze relative ai suoi lati. Fammi avere il tuo file tramite posta elettronica, oppure salvato su una chiavetta usb, oppure ancora tramite il cloud di GeoGebra.

Se pensi ti sia utile, puoi guardare il videotutorial incorporato alla fine di questo articolo.

Puoi scegliere i colori e il tipo di tratto che vuoi; è però importante che la tua scelta sia fatta in modo da far capire a colpo d’occhio quali sono le coppie lato-altezza.

Una volta terminata la costruzione, fai misurare a GeoGebra gli angoli del tuo triangolo. Muovi i vertici del triangolo e osserva dove vanno a finire le altezze quando il triangolo è acutangolo, ottusangolo o rettangolo. Per “dove vanno a finire” intendo in particolare se sono interne al triangolo, se escono dal triangolo o se coincidono con i lati del triangolo.

Scrivi, usando lo strumento “testo”, le risposte a queste domande:

  1. Le tre altezze di un triangolo si incontrano sempre in uno stesso punto?
  2. In un triangolo acutangolo, dove stanno le altezze? Sono interne, esterne o coincidono con i lati del triangolo?
  3. In un triangolo rettangolo, dove stanno le altezze? Sono interne, esterne o coincidono con i lati del triangolo?
  4. In un triangolo ottusangolo, dove stanno le altezze? Sono interne, esterne o coincidono con i lati del triangolo?

Compiti 2ªC 28-05-19

Omotetie con GeoGebra

Il compito consiste nella costruzione di un file con GeoGebra e nel rispondere ad alcune domande, in forma scritta. (Puoi scrivere le tue risposte in forma completa sul quaderno, o su un file che stamperai o mi farai avere; se hai un dito che ti fa male al punto da non riuscire a scrivere né a mano, nè con il computer, registra un file audio e inviamelo!)

Ricordati della regola che ci siamo dati per i nomi dei files: in questo caso dovrà essere
cognome_2c_omotetia.ggb

Costruisci un file di GeoGebrea per studiare le omotetie, utilizzando gli strumenti Slider e Omotetia

Osservare le figure omotetiche

Con lo strumento Poligono disegna un pentagono.
Con lo strumento Punto disegna un punto esterno al pentagono e chiamalo O.
Seleziona il comando Slider. Fai click in un punto qualunque della vista grafica. Ti comparirà una finestra di controllo in cui dovrai selezionare la voce Numero, scegliere come nome k e come intervallo da -4 a +4, lasciando come incremento 0,1. Dopo aver cliccato su Applica, ti compare nella vista grafica una linea con un punto. Selezionando lo strumento Muovi puoi trascinare questo punto sulla linea; trascinandolo, cambia il valore del numero k. Muovi il punto dello slider fino ad ottenere k = 2.

Seleziona lo strumento Omotetia, poi seleziona il poligono, il punto O e (nella finestrella che ti chiede il Rapporto) digita k (proprio la stessa lettera che hai scelto prima), infine clicca su OK.

A questo punto Geogebra ti ha disegnato il pentagono che è il trasformato del tuo tramite l’omotetia di centro O e di rapporto k = 2.
Ma se adesso selezioni il comando Muovi e trascini il punto sullo slider, cambia il rapporto dell’omotetia e di conseguenza la figura creata. Funziona?

Domande

Esiste un valore di k per il quale la figura trasformata coincide con la figura originale? Se sì, che valore è?
Esiste un valore di k per il quale la figura trasformata si riduce ad un punto? Se sì, che valore é?
Per quali valori di k la figura trasformata è più piccola dell’originale?
Per quali valori di k la figura trasformata è più grande dell’originale?
Per quali valori di k la figura trasformata è congruente all’originale?

Con lo strumento Muovi trascina il punto O dentro il pentagono. Poi fai variare il valore di k trascinando il punto sullo slider.

Possiamo dire che ciascun lato della figura trasformata è perpendicolare al lato corrispondente nella figura originale?
Possiamo dire che ciascun lato della figura trasformata è parallelo al lato corrispondente nella figura originale?

Compiti 2aC 24-05-2019

Omotetie

Ricorda:

  • una omotetia di centro O è una trasformazione che manda ogni punto P del piano in un punto P’ che si trova sulla retta OP;
  • se il rapporto dell’omotetia è positivo (+), il punto P’ si trova dalla stessa parte di P rispetto ad O;
  • se il rapporto dell’omotetia è negativo (-), il punto P’ si trova dalla parte opposta di P rispetto ad O;
  • il rapporto tra la lunghezza del segmento OP’ e la lunghezza del segmento OP è pari al valore assoluto del rapporto dell’omotetia (in altre parole: se il rapporto dell’omotetia è +4 o -4, la distanza di P’ da O è il quadruplo della distanza di P da O; se il rapporto dell’omotetia è -1/2 o +1/2, la distanza di P’ da O è la metà della distanza di P da O).

Esercizio 1

Ricopia sul quaderno la figura, contando bene i quadretti (ad ogni quadretto sulla figura, fai corrispondere un quadretto sul quaderno).

Disegna il poligono A’B’C’D’E’, immagine di ABCDE in una omotetia di centro O e rapporto +1/4.

omo1

Esercizio 2

Ricopia sul quaderno la figura, contando bene i quadretti (ad ogni quadretto sulla figura, fai corrispondere un quadretto sul quaderno).

Disegna il poligono A’B’C’D’E’, immagine di ABCDE in una omotetia di centro O e rapporto +3.

omo2

Esercizio 3

Ricopia sul quaderno la figura, contando bene i quadretti (ad ogni quadretto sulla figura, fai corrispondere un quadretto sul quaderno).

Disegna il poligono A’B’C’D’E’, immagine di ABCDE in una omotetia di centro O e rapporto -1/3.

omo3

Esercizio 4

Ricopia sul quaderno la figura, contando bene i quadretti (ad ogni quadretto sulla figura, fai corrispondere un quadretto sul quaderno).

Disegna il poligono A’B’C’D’E’, immagine di ABCDE in una omotetia di centro O e rapporto -2.

omo4

Compiti 2a C 9-5-19

Simili o deformati?

Considera le seguenti figure e poi fai gli esercizi proposti.

Figura A

Figura B

Figura C

Figura D

Esercizio 1

Considera i segmenti evidenziati nelle varie figure: segmenti corrispondenti sono segnati con lo stesso colore.
Puoi vedere: sul fiore un segmento verde e uno rosso; su una foglia un segmento giallo e uno marrone; sul sottovaso un segmento blu e uno nero.

Copia la seguente tabella sul quaderno e completala, indicando nelle nove caselle libere i rapporti tra i segmenti indicati relativi a ciascuna figura. Come nel caso della Figura C, scrivi ciascun rapporto come frazione, come numero decimale e come percentuale.

  Figura A Figura B Figura C Figura D

rapporto tra
il segmento verde e
il segmento rosso

    1:2 =
= 1/2 =
= 0,5 =
= 50%
 
rapporto tra
il segmento arancio e
il segmento marrone
   

3:1 =
= 3/1 =
= 3 =
= 300%

 

rapporto tra
il segmento blu e
il segmento nero

    1:4 =
= 1/4 =
= 0,25 =
= 25%
 

Esercizio 2

Tra le figure date, ce ne sono alcune simili tra loro? Se sì, quali?

Esercizio 3

Considera gli angoli delle figure.

Ogni angolo della Figura A è uguale all’angolo che gli corrisponde nella Figura B?
Ogni angolo della Figura A è uguale all’angolo che gli corrisponde nella Figura C?
Ogni angolo della Figura A è uguale all’angolo che gli corrisponde nella Figura D?

Esercizio 4

Scegli due segmenti orizzontali (e quindi paralleli tra loro) nella Figura A; considera i corrispondenti segmenti nella Figura B: anche questi segmenti sono paralleli tra loro?

Scegli due segmenti verticali (e quindi paralleli tra loro) nella Figura A; considera i corrispondenti segmenti nella Figura C: anche questi segmenti sono paralleli tra loro?

Segli due segmenti paralleli tra loro, ma nè verticali nè orizzontali, nella Figura A; considera i corrispondenti segmenti nella Figura D: anche questi segmenti sono paralleli tra loro?

Compiti 2a C 12-3-19

Alla lavagna

Venerdì scorso abbiamo dimostrato insieme, raccogliendo le nostre osservazioni in una tabella, che la radice quadrata di 2 non può essere una frazione.

Copia sul tuo quaderno quanto abbiamo scritto alla lavagna e prova a ripercorrere (sia mentalmente, sia raccontandole) le tappe della dimostrazione fatta in classe.

Pitagora box

Guarda con attenzione in video qui sotto incorporato. Non tutto quello che in esso si dice è storicamente corretto (anzi, forse sono più le inesattezze e gli aneddoti che i fatti storici), però vi può aiutare a richiamare alla mente alcune delle cose che ci siamo detti in classe, in modo divertente!

Compiti 2a C 7-3-19

Quale isometria?

Copia sul tuo quaderno, contando i quadretti, ciascuna delle seguenti coppie di figure congruenti.

Per ciascuna coppia, determina quale trasformazione del piano manda una figura nell’altra.

Se si tratta di una riflessione, determina l’asse.

Se si tratta di una rotazione, determina il centro, l’angolo e il verso della rotazione.

Se si tratta di una traslazione determina la direzione, il verso e la lunghezza.

Se si tratta di una glissoriflessione determina l’asse della riflessione e poi direzione, verso e lunghezza della traslazione che compongono la glissoriflessione.

 

 

 

 

Compiti 2a C 25-2-19

Dai triangoli ai quadrati

Copia su carta a quadretti le seguenti figure; sfruttando i quadretti suddividi ciascuna di essi in parti che tu possa poi ricomporre in un rettangolo equivalente.

 

 

 

Compiti 1a C 21-2-19

Riflessioni e rotazioni successive

Prime rotazioni successive

Copia sulla carta isometrica la figura seguente. Poi ruotala attorno al punto segnato di 60°, con rotazioni successive in senso orario.

figura 1 - trova le immagini tramite rotazioni successive di 60° in senso orario

Prime riflessioni successive

Copia sulla carta isometrica la seguente figura (uguale a quella precedente). Poi disegna le sue immagini riflesse tramite gli assi disegnati.

figura 1 - trova le immagini tramite riflessioni rispetto agli assi indicati

Seconde rotazioni successive

Copia sulla carta isometrica la figura seguente. Poi ruotala attorno al punto segnato di 60°, con rotazioni successive in senso orario.

figura 2 - trova le immagini tramite rotazioni successive di 60° in senso orario

Seconde riflessioni successive

Copia sulla carta isometrica la seguente figura (uguale a quella precedente). Poi disegna le sue immagini riflesse tramite gli assi disegnati.

figura 2 - trova le immagini tramite riflessioni rispetto agli assi indicati

Compiti 1a C 14-2-19

Cuori per San Valentino…

Copia ciascuna delle seguenti figure sul tuo quaderno, rispettando i quadretti. Segna di volta in volta anche il punto indicato.

Per ciascuna figura e ciascun punto, applica quattro rotazioni successive di 90° (in senso orario) attorno a quel punto.

Attenzione: le prime tre figure sono uguali tra loro (così come le ultime tre sono uguali tra loro) ma cambia la posizione del centro di simmetria.

Prima figura

Seconda figura

Terza figura

Quarta figura

Quinta figura

Sesta figura

Compiti 2aC 7-1-19

Problemini

Sul quaderno di matematica, risolvi i seguenti problemi, tenendo come riferimento quelli che abbiamo risolto in classe ultimamente.

  1. Un triangolo ha un angolo di 15° e un angolo di 75°. Che tipo di triangolo è?
  2. In un triangolo, un angolo misura 42° e gli altri due sono uguali tra loro. Quanto misurano questi angoli?
  3. In un triangolo isoscele, l’angolo più piccolo è 1/4 di ciascuno degli altri due angoli. Quanto misurano gli angoli di questo triangolo?
  4. In un triangolo isoscele, l’angolo più grande è il triplo di ciascuno degli altri due angoli. Quanto misurano gli angoli di questo triangolo?
  5. Il perimetro di un rettangolo misura 280 cm. Un lato del rettangolo è uguale ai 2/5 di un altro lato. Quanto misurano i lati di questo rettangolo?
  6. Il perimetro di un rettangolo misura 44 cm. Un lato del rettangolo è uguale ai 3/7 di un altro lato. Quanto misurano i lati di questo rettangolo?

Problema

In classe ci siamo convinti del fatto che in tutti i triangoli, la somma degli angoli misura 180°.

A partire da questo fatto, sapresti dire se anche per tutti i quadrilateri la somma degli angoli interni è sempre la stessa? E, nel caso sia sempre la stessa, sapresti dire qual è questa somma? E, in ogni caso, sapresti dire perché? Sapresti fare degli esempi?

Provaci, sul tuo quaderno.

Quadrilateri di vari tipo, con evidenziate le diagonali

Esercizi

Esercizio 1

Trova l’errore nella seguente espressione, poi ricopia la prima riga e risolvila correttamente sul tuo quaderno.

Espressione con le frazioni con un errore

Esercizio 2

Trova l’errore nella seguente espressione, poi ricopia la prima riga e risolvila correttamente sul tuo quaderno.

Espressione con le frazioni con un errore

Esercizio 3

Trova l’errore nella seguente espressione, poi ricopia la prima riga e risolvila correttamente sul tuo quaderno.

Espressione con le frazioni con un errore

Esercizio 4

Trova l’errore nella seguente espressione, poi ricopia la prima riga e risolvila correttamente sul tuo quaderno.

Espressione con le frazioni con un errore

 

Sbagliando si impara

Se non fai errori, stai lavorando su problemi che non sono abbastanza difficili. E questo è un grosso errore.
(Frank Wikzek)

Lunedì 27 febbraio 2018, in terza C [1], abbiamo raccolto le fila di un lungo lavoro fatto in classe nelle scorse settimane. Ogni alunno aveva costruito, a partire da sviluppi piani stampati da me su cartoncini, una dozzina di poliedri. In piccoli gruppi, in classe, avevano dovuto contare, per ciascuno dei loro poliedri, il numero dei suoi spigoli, dei suoi vertici e delle sue facce. Tutti questi numeri erano stati inseriti in una tabella che i ragazzi avevano dovuto analizzare per vedere se riuscivano a trovare qualche regolarità, in particolare se riuscivano a trovare una relazione valida per tutti i poliedri analizzati che legasse S (il numero degli spigoli), V (il numero dei vertici) e F (il numero delle facce).

Raccogliere le fila ha significato constatare che solo [2] una alunna (Anna) aveva scoperto qualcosa, accorgendosi che per ciascuno dei poliedri i cui dati avevamo inserito in tabella accadeva che V-S+F=2.

Dapprima, malfidati come abbiamo imparato ad essere, abbiamo verificato che in tutti i casi da noi studiati (una ventina in tutto) questa relazione fosse valida. Per farlo abbiamo semplicemente calcolato V-S+F per tutti i poliedri costruiti e schedati: abbiamo visto che il risultato veniva sempre 2.

Ovviamente ho fatto i complimenti ad Anna e ho detto a tutti che questa relazione è nota come “relazione di Eulero”; i ragazzi erano entusiasti, stupiti del fatto che valesse sempre, anche per i poliedri più strani che avevamo costruito, come ad esempio, un cubo a cui mancava un cubetto:

Immagine del cubo senza cubetto tratta da http://www.korthalsaltes.com

Ho però presto frenato i loro entusiasmi insinuando un dubbio: siamo certi che questa relazione sia valida per tutti i poliedri?

Poiché l’ora volgeva al termine, ho detto loro di provare a fare lo stesso calcolo per questo poliedro, che avevamo disegnato su carta isometrica in una delle precedenti lezioni [3]:

Poliedro o non poliedro, questo è il dilemma

L’ho detto convinta che, essendo questo poliedro “buco”, la relazione di Eulero non valesse; e invece, proprio mentre suonava la campanella, noi stavamo contando i 16 vertici, i 24 spigoli e le 10 facce (1 sopra, 1 sotto, 4 esterne e 4 interne), accorgendoci che V-S+F=16-24+10 faceva comunque 2.

Me ne sono uscita dicendo che c’era qualcosa che non andava, ma non sapevo cosa: o avevamo sbagliato a contare, o io avevo preso un abbaglio!

Grazie al cielo, proprio quel pomeriggio, ho partecipato ad una lezione di aggionamento ed approfondimento sulla Geometria, tenuta dalla professoressa Maria Dedò a Padova, presso il Liceo artistico “Pietro Selvatico“. Il titolo della conferenza era proprio “V-S+F=2 ovvero… salviamo la geometria dall’estinzione!”

Non mi sono fatta sfuggire l’occasione e ho proprio chiesto alla professoressa Dedò che cosa ci fosse che non andava nel mio “controesempio”: non essendo omeomorfo ad una sfera, ma ad un toro, la costante di Eulero non sarebbe dovuta valere 0? E così mi sono accorta che il problema stava nella definizione di poliedro. Se le facce di un poliedro devono essere dei poligoni, e se i poligoni devono essere delle parti di piano delimitate da una linea spezzata chiusa, il solido che avevo preso di esempio non era esattamente un poliedro (la faccia di sopra e la faccia di sotto non sono dei poligoni… sono parti di piano delimitate da due spezzate, una dentro l’altra).

Il giorno dopo, tornata a scuola, ho raccontato ai ragazzi della lezione di lunedì pomeriggio, e ho portato loro, trionfante, un solido (questa volta un vero poliedro) che avevamo costruito con il Polydron durante la lezione del pomeriggio prima:

Poliedro con caratteristica di Eulero pari a 0, formato da 5 cubottaedri e 5 prismi a base triangolare.

Due ragazzi (Luca e Thomas) in breve tempo hanno contato 60 vertici, 135 spigoli e 75 facce: quindi V-S+F=60-135+75 davvero non veniva 2, ma 0.

A questo punto ho chiesto ai ragazzi, divisi in gruppetti da 3 o 4 persone ciascuno, di costruire altri poliedri di questo tipo, con un buco in mezzo, per vedere se il valore di V-S+F continuasse ad essere 0.

Questo è il poliedro costruito da Nensi, Desiré, Sara e Vanessa:

Poliedro con caratteristica di Eulero pari a 0, formato da 5 piramidi a base quadrata e 5 prismi a base triangolare.

25 vertici, 55 spigoli, 30 facce; 25-55+30=0

Questo il poliedro costruito da Silvia, Shanty, Marco e Daniel:

Poliedro con caratteristica di Eulero pari a 0, formato da 5 bipiramidi a base quadrata e 5 prismi a base triangolare.

30 vertici, 75 spigoli, 45 facce; 30-75+45=0

Questo il poliedro costruito da Anna, Luca, Ambra e Sara:

54 vertici, 108 spigoli, 54 facce; 54-108+54=0

Dei vari gruppi, quello che ha avuto più difficoltà a contare vertici, spigoli e facce è stato il gruppo che ha costruito l’ultimo dei solidi qui sopra, perché in esso c’era sì una struttura che si ripeteva 9 volte, ma questa struttura non era tra “i solidi noti”.

Udaya, Marco e Riccardo hanno costruito questo solido:

24 vertici, 52 spigoli, 28; facce 24-52+28=0

In questo gruppo gli alunni hanno usato più tessere di Polydron per una stessa faccia: in alto si vedono quindi tante tessere diverse, ma le facce sono “solo” quattro trapezi (ciascuno formato da tre tessere triangolari: una rossa, una verde e una gialla) e quattro triangoli (le tessere blu); così pure, esternamente, ci sono quattro facce formate da quattro tessere quadrate ciascuna e quattro facce formate da due tessere quadrate ciascuna.

E adesso veniamo agli “errori”. Di un primo errore, il mio, ne abbiamo già parlato. E forse proprio questo mio primo errore ha male instradato due gruppi, che hanno costruito due solidi con due facce parallele che però non sono dei poligoni, ma delle superfici “con un buco”.

Questo il solido costruito da Andrea, Alessio, Matteo e Riccardo:

Solido formato da 10 prismi a base pentagonale.

Questo il solido costruito da Luca, Ilenia e Sara:

Solido formato da 6 parallelepipedi e da 6 prismi a base triangolare.

Anche a questi due gruppi, però, la somma V-S+F veniva 0. E io non mi capacitavo…

Com’è che nel mio solido/non-poliedro (anche se buco) la somma V-S+F non veniva 0, mentre nei solidi/non-poliedri buchi dei miei alunni invece sì?

Mi sono messa ad ascoltare come facevano i conti e mi sono accorta che (in entrambi i casi) consideravano le due facce parallele come suddivise in tante facce più piccole (una per ogni tessera del Polydron usata) e così ogni giuntura tra due tessere diventava uno spigolo. La mia prima reazione è stata, più o meno, questa: “Ma così state sommando errore ad errore! Il primo errore è stato che avete costruito un solido con due facce “buche” che quindi non è un poliedro, il secondo errore è che avete contato facce ciò che facce non sono e spigoli ciò che spigoli non sono”.

Tornata a casa ci ho pensato su.

E ho pensato che, in realtà, il loro doppio errore apre la strada ad una riflessione profonda, che vedrò di proporre loro nella prossima lezione. La caratteristica di Eulero non appartiene solo ai poliedri. Appartiene ad un qualsiasi grafo [4] disegnato su una superficie: V indicherà il numero dei nodi del grafo, S indicherà il numero degli archi che connettono i nodi, F indicherà il numero delle regioni in cui la superficie risulta divisa. Se il grafo sarà disegnato su una superficie omeomorfa alla sfera, V-S+F sarà uguale a 2; se il grafo sarà disegnato su una superficie omeomorfa ad un toro, V-S+F sarà uguale a 0. Gli alunni di questo gruppo, di fatto, non hanno costruito un poliedro; ma hanno comunque evidenziato, sulla superficie del loro solido, un grafo per il quale comunque vale la relazione di Eulero: grandi, no?

[1] Si tratta della classe terza C della Scuola secondaria di primo grado “Piero Calamandrei” di Chirignago, Venezia.

[2] Forse non è il caso di dire “solo”, visto che il primo matematico ad accorgersi di questo fatto è stato Eulero, vissuto nel XVIII secolo.

[3] Su carta isometrica gli alunni avevano disegnato, durante le lezioni immediatamente precedenti a questa, vari solidi, copiandoli dal vero da solidi costruiti da me giustapponendo vari cubetti.

[4] In realtà non è che sia proprio un grafo qualsiasi. Deve essere un grafo che assomiglia ad un poliedro…! Ogni spigolo deve essere adiacente ad esattamente due facce e contenere esattamente due vertici, dati due vertici deve esistere al massimo uno spigolo che li contenga entrambi, date due facce, deve esistere al massimo uno spigolo adiacente ad entrambe, ogni vertice deve essere adiacente ad almeno tre facce e ogni faccia deve contenere almeno tre vertici.

Omotetia per le vacanze

Uno dei compiti di queste vacanze, come sai, è costruire cinque diversi files con Geogebra e rispondere ad alcune domande.

Trovi di seguito le indicazioni da seguire per costruire i files e le domande a cui rispondere (meglio se creando una casella di testo all’interno del file di Geogebra o, in alternativa, sul quaderno). Mi raccomando: per ciascuna costruzione crea un diverso file e salva ciascuno di essi con un nome appropriato.

1. Costruire una prima omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro A e passante per O.
Con lo strumento Intersezione individua il punto D, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro D e passante per A.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro B e passante per O.
Con lo strumento Intersezione individua il punto E, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro E e passante per B.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro C e passante per O.
Con lo strumento Intersezione individua il punto F, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro F e passante per C.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

1.1. Qual è il centro dell’omotetia?
1.2. Qual è il valore di questa omotetia?
1.3. Si tratta di una omotetia inversa o diretta?
1.4. Si tratta di un ingrandimento o di una riduzione?

2. Costruire una seconda omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per A.
Con lo strumento Intersezione individua il punto D, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro D e passante per O.
Con lo strumento Intersezione individua il punto E, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro E e passante per D.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per B.
Con lo strumento Intersezione individua il punto F, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro F e passante per O.
Con lo strumento Intersezione individua il punto G, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro G e passante per F.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per C.
Con lo strumento Intersezione individua il punto H, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro H e passante per O.
Con lo strumento Intersezione individua il punto I, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro I e passante per H.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

2.1. Qual è il centro dell’omotetia?
2.2. Qual è il valore di questa omotetia?
2.3. Si tratta di una omotetia inversa o diretta?
2.4. Si tratta di un ingrandimento o di una riduzione?

3. Costruire una terza omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Segmento traccia il segmento AO.
Con lo strumento Punto medio o centro individua il punto medio del segmento AO e chiamalo A’.

Con lo strumento Segmento traccia il segmento BO.
Con lo strumento Punto medio o centro individua il punto medio del segmento BO e chiamalo B’.

Con lo strumento Segmento traccia il segmento CO.
Con lo strumento Punto medio o centro individua il punto medio del segmento CO e chiamalo C’.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

3.1. Qual è il centro dell’omotetia?
3.2. Qual è il valore di questa omotetia?
3.3. Si tratta di una omotetia inversa o diretta?
3.4. Si tratta di un ingrandimento o di una riduzione?

4. Costruire una quarta omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento AO e chiamalo D.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per D.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento BO e chiamalo E.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per E.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento CO e chiamalo F.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per F.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

4.1. Qual è il centro dell’omotetia?
4.2. Qual è il valore di questa omotetia?
4.3. Si tratta di una omotetia inversa o diretta?
4.4. Si tratta di un ingrandimento o di una riduzione?

5. Osservare le figure omotetiche

Con lo strumento Poligono disegna un pentagono.
Con lo strumento Punto disegna un punto esterno al pentagono e chiamalo O.
Seleziona il comando Slider. Fai click in un punto qualunque della vista grafica. Ti comparirà una finestra di controllo in cui dovrai selezionare la voce Numero, scegliere come nome k e come intervallo da -5 a +5, lasciando come incremento 0,1. Dopo aver cliccato su Applica, ti compare nella vista grafica una linea con un punto. Selezionando lo strumento Muovi puoi trascinare questo punto sulla linea; trascinandolo, cambia il valore del numero k. Muovi il punto dello slider fino ad ottenere k = 2.

Seleziona lo strumento Omotetia, poi seleziona il poligono, il punto O e (nella finestrella che ti chiede il Rapporto) digita k (proprio la stessa lettera che hai scelto prima), infine clicca su OK.

A questo punto Geogebra ti ha disegnato il pentagono che è il trasformato del tuo tramite l’omotetia di centro O e di rapporto k = 2.
Ma se adesso selezioni il comando Muovi e trascini il punto sullo slider, cambia il rapporto dell’omotetia e di conseguenza la figura creata. Funziona?

Domande

5.1. Esiste un valore di k per il quale la figura trasformata coincide con la figura originale? Se sì, che valore è?
5.2. Esiste un valore di k per il quale la figura trasformata si riduce ad un punto? Se sì, che valore é?
5.3. Per quali valori di k la figura trasformata è più piccola dell’originale?
5.4. Per quali valori di k la figura trasformata è più grande dell’originale?
5.5. Per quali valori di k la figura trasformata è congruente all’originale?

Con lo strumento Muovi trascina il punto O dentro il pentagono. Poi fai variare il valore di k trascinando il punto sullo slider.

5.6. Possiamo dire che ciascun lato della figura trasformata è perpendicolare al lato corrispondente nella figura originale?
5.7. Possiamo dire che ciascun lato della figura trasformata è parallelo al lato corrispondente nella figura originale?

Compiti per il 22 maggio 2017- seconda C

Nell’ultima lezione di aritmetica abbiamo imparato come costruire segmenti aventi per lunghezza la radice quadrata di 2, di 3 e di tutti i numeri naturali.

Questi segmenti possono venir riportati sulla retta numerica (come abbiamo fatto in classe) o costruiti “uno attorno all’altro”, a formare una spirale: si parte da un triagolo rettangolo isoscele e si procede come ho accenntato in classe, disegnando così una figura che prende il nome di spirale di Teodoro.

Se la spiegazione in classe non è stata abbastanza chiara, o se vuoi approfondire l’argomento, ecco alcuni link che puoi consultare:

In questi link, non vengono date istruzioni precise a proposito di quali strumenti di GeoGebra utilizzare, ma solo riguardanti la costruzione geometrica: se sei in difficoltà, mandami un messaggio di posta elettronica, e ti invierò un videotutorial con le istruzioni precise.

Per il 22 maggio 2017 mi aspetto di ricevere (per posta elettronica o su una chiavetta usb) un tuo file, dove la spirale sia costruita almeno fino al segmento di lunghezza radicequadrata di 17.

Ecco alcuni dei disegni dei miei alunni di qualche anni fa:

Spirale di Massimiliano

Massimiliano, Geogebra, spirale di Teodoro

Spirale di Gaia

Gaia, Geogebra, Spirale di Teodoro

Spirale di Francesca

Francesca, Geogebra, Spirale di Teodoro

Spirale di Davide

Davide, Geogebra, Spirale di Teodoro

Spirale di Riccardo

Riccardo, Geogebra, Spirale di Teodoro

Spirale di Irene ed Elisa

Irene ed Elisa, Geogebra, spirale di Teodoro

Spirale di Martina

Martina, Geogebra, Spirale di Teodoro

Spirale di Leonardo L.

Leonardo L., Geogebra, Spirale di Teodoro

Spirale di Andrea M.

Andrea M., Geogebra, Spirale di Teodoro

Spirale di Andrea

Andrea D.M., Geogebra, spirale di Teodoro

Spirale di Aurora e Matilde

Aurora e Matilde, Geogebra, Spirale di Teodoro


La seguente immagine non è di un alunno, ma di una collega: grazie a Daniela Molinari, che i miei studenti conoscono già per le sue recensioni su amolamatematica.it.
Daniela ha lasciato tutti gli elementi della costruzione e ha colorato nello stesso modo tutti i triangoli. A mio parere l’effetto è quello di lasciare che siano evidenti (dalla costruzione, appunto) le proprietà della figura e di dare un’immagine complessiva della spirale, piuttosto che dei suoi singoli spicchi.

Spirale di Teodoro di Cirene; Daniela Molinari; Geogebra.

Daniela Molinari, Geogebra, spirale di Teodoro

 

 

 

 

Simmetrie

Dalle classi seconda C e terza C dell’anno scolastico 2016 / 2017 della Scuola secondaria di primo grado “Piero Calamandrei” di Venezia Chirignago alcune interpretazioni della simmetria ottenute grazie a GeoGebra.

Compiti per l’11 gennaio 2017, classe 2ª C

Ricopia sul quaderno le figure disegnate sul secondo volume del libro di geometria alle seguenti pagine:

  • pagina G90, figure dell’esercizio numero 3;
  • pagina G219, figure degli esercizi numero 1 e 4;
  • pagina G214 figure degli esercizi numero 1, 2, 3 e 4;
  • pagina G215, figure degli esercizi numero 5, 6, 7 e 8.

Di ciascuna figura disegnata sul tuo quaderno, misura l’area in centimetri quadrati, come abbiamo fatto in classe.

Compiti per il 21 dicembre 2016, classe 2ª C

Osserva la figura qui sopra.
I segmenti AB, AC, AD, AE sono tutti uguali.
In particolare, se usiamo come unità di misura il lato di un quadretto, sono tutti lunghi 5.

Osserva bene come sono posti i loro estremi rispetto agli incroci dei quadretti.
Riproduci la figura sul tuo quaderno, rispettando gli incroci con i quadretti.

Rombi

Riesci a disegnare un rombo che abbia uno dei lati messo (rispetto ai quadretti) come AB, ossia orizzontale e lungo 5?
Uno solo o anche di più?
Disegna tutti i rombi che riesci, diversi tra loro, con un lato messo come il segmento AB.

Riesci a disegnare un rombo che abbia uno dei lati messo (rispetto ai quadretti) come AC, ossia verticale e lungo 5?
Uno solo o anche di più?
Disegna tutti i rombi che riesci, diversi tra loro, con un lato messo come il segmento AC.

Riesci a disegnare un rombo che abbia uno dei lati messo (rispetto ai quadretti) come AD, ossia con coefficiente angolare sx3 giù4 e lungo 5?
Uno solo o anche di più?
Disegna tutti i rombi che riesci, diversi tra loro, con un lato messo come il segmento AD.

Riesci a disegnare un rombo che abbia uno dei lati messo (rispetto ai quadretti) come AE, ossia con coefficiente angolare sx4 giù3 e lungo 5?
Uno solo o anche di più?
Disegna tutti i rombi che riesci, diversi tra loro, con un lato messo come il segmento AE.