Category Archives: Eventi

Compiti – 1C – 15/01/2018

Le potenze di 10 e gli ordini di grandezza

Guarda, con estrema attenzione, i video seguenti. In classe ti farò alcune domande in proposito.

I primi due link, rimandano allo stesso video: il primo è in Inglese, il secondo è doppiato in Italiano. Il video Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Il terzo link, invece, rimanda ad un “video interattivo” sempre sugli ordinidi grandezza.

Powers of ten

Potenze di dieci

Lo stesso video di prima, doppiato in Italiano!

La scala dell’universo

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

La parola “scala” in questo contesto è da intendersi come rapporto tra una grandezza reale e la sua rappresentazione grafica (non quindi come mezzo da salire o scendere!).

Compiti – 1C – 18/12/2017

Leggi il seguente racconto, con estrema attenzione, e guarda il video seguente.

In classe ti farò alcune domande in proposito.

Il video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahann.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

 

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

 

Compiti per il 12 aprile – seconda C

Guarda con attenzione i seguenti video:

Radice di due e i numeri irrazionali: vediamoli nella realtà (di Ornella Robutti)

Come nascono i numeri irrazionali (di Daniela Valenti)

Se ti interessa, puoi anche riguardare il cartone animato che abbiamo guardato in classe, andando sul sito Pitagora box.

Se poi hai ancora del tempo da dedicare alla radice di due e vuoi scoprire alcune curiosità che la riguardano, guarda anche questi video:

Storia e destino della radice quadrata di due (Benoît Rittaud)

Se la radice di due ti appassiona, puoi guardare anche questi video:
Root 2 – numberfilie

The square root of two: why it matters

What was up with Pythagoras?

Compiti per l’8 aprile – prima C

Poligoni con GeoGebra

Innanzitutto, per chi non avesse ancora scaricato GeoGebra, questo il link al sito ufficiale, da cui scaricare il programma per installarlo sul proprio dispositivo. Come vi ho già più volte detto, vi prego, in questa prima fase di ricerca su internet ed installazione sul vostro dispositivo, di farvi aiutare da un adulto.

I video incorporati in questo articolo ti mostrano come disegnare un poligono e come inserire un testo in un file di GeoGebra. Sfruttali per poter eseguire il compito.

Puoi spedirmi il tuo file al mio indirizzo di posta elettronica o consegnarmelo in classe su una chiavetta usb.

Compito

Crea un file con GeoGebra; dagli nome “cognome-nome-1c-poligoni-1”; l’estensione del file dovrà essere “ggb”.

Disegna un triangolo.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che non ha letto le domande):

  • può un triangolo essere stellato?
  • può un triangolo essere concavo?

Disegna un quadrilatero.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che le ha lette):

  • può un quadrilatero essere stellato?
  • in quanti punti (al massimo) si possono incrociare i lati di un quadrilatero stellato?
  • può un quadrilatero essere concavo?
  • quanti angoli concavi (al massimo) può avere un quadrilatero concavo?

Disegna un pentagono.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che le ha lette):

  • può un pentagono essere stellato?
  • in quanti punti (al massimo) si possono incrociare i lati di un pentagono stellato?
  • può un pentagono essere concavo?
  • quanti angoli concavi (al massimo) può avere un pentagono concavo?

Come disegnare un poligono

Come inserire un testo

Compiti per il 31 marzo – prima C

Gli ordini di grandezza

Come compito per giovedì 31 marzo vi chiedo tre cose:

  1. leggere con estrema attenzione la pagina A228 del vostro libro di testo;
  2. guardare con estrema attenzione il video Powers of ten incorporato in questo articolo;
  3. guardare con estrema attenzione il video interattivo The scale of the universe seguendo il link che troverete in fondo a questo articolo.

Giovedì discuteremo insieme di questi video, delle sensazioni che hanno suscitato in voi e degli aspetti matematici in essi contenuti che ancora non vi sono noti (li trovate?)

Powers of ten

Questo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

The scale of the universe

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Compiti per il 10 marzo – prima C

In classe vi ho raccontato la storia del re malinconico e dell’inventore degli scacchi: qui la riporto così come è scritta nel libro L’uomo che sapeva contare, di Malba Tahan. Leggete questo brano e poi guardate con attenzione il video che rappresenta i chicchi di grano che sarebbero stati necessari per soddisfare la richiesta dell’inventore degli scacchi.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo questeparole, Re Iadava esclamò: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane, insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia, ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Compiti per il 18 marzo – seconda C

Compito

Metalli alcalini in acqua

I metalli alcalini sono tutti gli elementi (idrogeno escluso) del gruppo 1 (IA) della tavola periodica: litio, sodio, potassio, rubidio, cesio e francio.

Essi sono in grado di cedere i loro elettroni anche agli atomi di idrogeno presenti nelle molecole di acqua; queste si rompono e si trasformano in molecole di idrogeno che si liberano allo stato gassoso e ioni OH che rimangono in soluzione. Il calore che si libera dalla reazione fa infiammare, o addirittura esplodere, l’idrogeno che si sviluppa.

Guarda questo video, ma soprattutto, per una volta, non tentare di imitare ciò che vedi!

Per chi vuole saperne di più…

Tavola periodica degli elementi

tavola periodica

Cliccando sull’immagine qui sopra riportata, vi si apre un link al sito P-table, che vi fornisce una tavola periodica degli elementi interattiva.
Una volta entrati nel sito, in alto a destra potete scegliere la lingua e altre opzioni; in alto a sinistra potete selezionalre la modalità di visualizzazione della tavola: wikipedia, proprietà, orbitale, isotopi, compounds. In ciascuna di queste modalità, cliccando sulla casella corrispondente ad un elemento chimico potete imparare molte cose e soddisfare tutte le vostre curiosità.

In particolare potete rispondere da soli alle domande che mi avete posto in classe (perché esistono il francio, il polonio e il germanio e non esistono elementi dedicati ad altre nazioni?).

Un video e una lezione per ogni elemento della tavola periodica

periodic videos

Cliccando sull’immagine qui sopra riportata, vi si aprirà una tavola periodica che vi dà modo, cliccando sulla casella corrispondente a ciascun elemento, di visualizzare una video-lezione su ciascun elemento della tavola periodica. Si tratta di lezioni in inglese, pensate per studenti della scuola superiore, ma molto accattivanti. Quelle che ho visto io sono anche sottotitolate in italiano (non con una traduzione automatica), quindi direi veramente accessibili anche a voi.

Siate curiosi!

 

Compiti per il 25 febbraio – seconda C

Studia gli appunti a proposito della dimostrazione del fatto che non esiste una frazione in cui quadrato sia uguale a 2.

Guarda con attenzione questo video:

Guarda attentamente anche questo video:

Compiti per il 26 febbraio – seconda C

Ricopia sul quaderno e bilancia le sei reazioni seguenti

Carbonato di sodio e acido cloridrico

Carbonato di sodio e acido cloridrico reagiscono producendo cloruro di sodio (il comune sale da cucina), diossido di carbonio (comunemente detta anidride carbonica) e acqua.

Na2CO3 + HCl → NaCl + CO2 + H2O

Puoi osservare la reazione in questo video:

Decano e ossigeno

Decano (uno dei componenti della benzina) e ossigeno reagiscono producendo diossido di carbonio (comunemente detta anidride carbonica) e acqua.

C10H22 + O2 → CO2 + H2O

Anidride solforosa e ossigeno

Anidride solforosa e ossigeno reagiscono producendo triossido di zolfo (comunemente detto anidride solforica)

SO2 + O2 → SO3

Alluminio e idrossido di sodio

Alluminio, acqua e idrossido di sodio (comunemente detto soda caustica) reagiscono producendo alluminato di sodio e idrogeno

Al + H2O + NaOH → NaAlO2 + H2

Puoi osservare questa reazione in questo video:

Acido cloridrico e alluminio

Acido cloridrico e alluminio reagiscono producendo tricloruro di alluminio e idrogeno

HCl + Al + → AlCl3 + H2

Puoi osservare questa reazione in questo video:

Acido cloridrico e ipoclorito di sodio

Acido cloridrico e ipoclorito di sodio (comunemente detto candeggina) reagiscono producendo cloruro di sodio (comunemente detto sale da cucina), acqua e cloro.

HCl + NaClO + → NaCl + H2O + Cl2

Puoi osservare questa reazione in questo video:

Compiti per il 18 febbraio – seconda C

Studia gli appunti a proposito di Pitagora di Samo, di Ippaso da Metaponto e della dimostrazione della non commensurabilità tra lato e diagonale del quadrato.

Guarda con attenzione il cartone animato presente sul sito Pitagora box.

Potenze

In questo articolo ho raccolto link ad alcuni video che illustrano in modo potentissimo il concetto di potenza…

Il primo video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahan.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Il secondo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Compiti per il 4 giugno – terza C

  1. Studia gli appunti.
  2. Studia da pagina 224 a pagina 245.
  3. A pagina 251 fai gli esercizi dal numero 31 al numero 36. A pagina 255 fai gli esercizi dal numero 76 al numero 84.

Compiti per il 29 maggio – prima C

Più che essere compiti per il 29 maggio, questo è ciò che dovrai fare il 29 maggio a scuola, durante l’ora di matematica.

  1. Studia gli appunti.
  2. Studia da pagina 249 a pagina 250.
  3. Sul quaderno, fai gli esercizi a pagina 267 dal numero 279 al numero 285.

 

Compiti per il 4 giugno – prima C

  1. Studia gli appunti, a proposito di altezze, ortocentro, mediane, baricentro, assi, circocentro, bisettrici e incentro di un triangolo.
  2. ostruisci questi files con GeoGebra:
    • il file cognome_nome_1c_ortocentro.ggb dovrà rappresentare un triangolo, le sue altezze e il suo ortocentro; ricordati di disegnare anche i prolungamenti dei lati del triangolo e i prolungamenti delle altezze, mettendo però in evidenza le altezze vere e proprie;
    • il file cognome_nome_1c_baricentro.ggb dovrà rappresentare un triangolo, le sue mediane e il suo baricentro;
    • il file cognome_nome_1c_circocentro.ggb dovrà rappresentare un triangolo, i suoi assi, il suo circocentro e la circonferenza ad esso circoscritta;
    • il file cognome_nome_1c_incentro.ggb dovrà rappresentare un triangolo, le sue bisettrici, il suo incentro e la circonferenza ad esso inscritta.
  3. Se non puoi o non vuoi utilizzare GeoGebra, puoi preparare gli stessi disegni su un foglio da disegno, utilizzando riga e compasso; su ciascuna tavola dovrai disegnare tre triangoli:
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con le sue altezze e il suo ortocentro;
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con le sue mediane e il suo baricentro;
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con i suoi assi, il suo circocentro e la circonferenza ad esso circoscritta;
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con le sue bisettrici, il suo incentro e la circonferenza ad esso inscritta.

Istruzioni per disegnare un triangolo e il suo ortocentro con GeoGebra

Istruzioni per disegnare un triangolo e il suo baricentro con GeoGebra

Istruzioni per disegnare un triangolo e il suo circocentro con GeoGebra

Istruzioni per disegnare un triangolo e il suo incentro con GeoGebra

Compiti per il 27 maggio – prima C

  1. Studia gli appunti, a proposito di altezze, ortocentro, mediane e baricentro di un triangolo.
  2. Anche se la consegna è prevista per giovedì 4 giugno, puoi iniziare a costruire i primi due files di GeoGebra richiesti:
    • il file cognome_nome_1c_ortocentro.ggb dovrà rappresentare un triangolo, le sue altezze e il suo ortocentro; ricordati di disegnare anche i prolungamenti dei lati del triangolo e i prolungamenti delle altezze, mettendo però in evidenza le altezze vere e proprie;
    • il file cognome_nome_1c_baricentro dovrà rappresentare un triangolo, le sue mediane e il suo baricentro.
  3. Se non puoi o non vuoi utilizzare GeoGebra, puoi preparare gli stessi disegni su un foglio da disegno, utilizzando riga e compasso; su ciascuna tavola dovrai disegnare tre triangoli:
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con le sue altezze e il suo ortocentro;
    • in una tavola disegnerai un triangolo acutangolo, un triangolo rettangolo e un triangolo ottusangolo, ciascuno con le sue mediane e il suo baricentro.

Istruzioni per disegnare un triangolo e il suo ortocentro con GeoGebra

Istruzioni per disegnare un triangolo e il suo baricentro con GeoGebra