Tag Archives: compiti

Compiti 2a C 12-3-19

Alla lavagna

Venerdì scorso abbiamo dimostrato insieme, raccogliendo le nostre osservazioni in una tabella, che la radice quadrata di 2 non può essere una frazione.

Copia sul tuo quaderno quanto abbiamo scritto alla lavagna e prova a ripercorrere (sia mentalmente, sia raccontandole) le tappe della dimostrazione fatta in classe.

Pitagora box

Guarda con attenzione in video qui sotto incorporato. Non tutto quello che in esso si dice è storicamente corretto (anzi, forse sono più le inesattezze e gli aneddoti che i fatti storici), però vi può aiutare a richiamare alla mente alcune delle cose che ci siamo detti in classe, in modo divertente!

Compiti 2a C 7-3-19

Quale isometria?

Copia sul tuo quaderno, contando i quadretti, ciascuna delle seguenti coppie di figure congruenti.

Per ciascuna coppia, determina quale trasformazione del piano manda una figura nell’altra.

Se si tratta di una riflessione, determina l’asse.

Se si tratta di una rotazione, determina il centro, l’angolo e il verso della rotazione.

Se si tratta di una traslazione determina la direzione, il verso e la lunghezza.

Se si tratta di una glissoriflessione determina l’asse della riflessione e poi direzione, verso e lunghezza della traslazione che compongono la glissoriflessione.

 

 

 

 

Compiti 2a C 25-2-19

Dai triangoli ai quadrati

Copia su carta a quadretti le seguenti figure; sfruttando i quadretti suddividi ciascuna di essi in parti che tu possa poi ricomporre in un rettangolo equivalente.

 

 

 

Compiti 1a C 21-2-19

Riflessioni e rotazioni successive

Prime rotazioni successive

Copia sulla carta isometrica la figura seguente. Poi ruotala attorno al punto segnato di 60°, con rotazioni successive in senso orario.

figura 1 - trova le immagini tramite rotazioni successive di 60° in senso orario

Prime riflessioni successive

Copia sulla carta isometrica la seguente figura (uguale a quella precedente). Poi disegna le sue immagini riflesse tramite gli assi disegnati.

figura 1 - trova le immagini tramite riflessioni rispetto agli assi indicati

Seconde rotazioni successive

Copia sulla carta isometrica la figura seguente. Poi ruotala attorno al punto segnato di 60°, con rotazioni successive in senso orario.

figura 2 - trova le immagini tramite rotazioni successive di 60° in senso orario

Seconde riflessioni successive

Copia sulla carta isometrica la seguente figura (uguale a quella precedente). Poi disegna le sue immagini riflesse tramite gli assi disegnati.

figura 2 - trova le immagini tramite riflessioni rispetto agli assi indicati

Compiti 1a C 14-2-19

Cuori per San Valentino…

Copia ciascuna delle seguenti figure sul tuo quaderno, rispettando i quadretti. Segna di volta in volta anche il punto indicato.

Per ciascuna figura e ciascun punto, applica quattro rotazioni successive di 90° (in senso orario) attorno a quel punto.

Attenzione: le prime tre figure sono uguali tra loro (così come le ultime tre sono uguali tra loro) ma cambia la posizione del centro di simmetria.

Prima figura

Seconda figura

Terza figura

Quarta figura

Quinta figura

Sesta figura

Compiti 1aC 22-1-19

I numeri primi

Cliccando sulla immagine seguente, ti si aprirà una pagina contenente un grafico interattivo, che mostra i primi 1000 numeri primi. Osservalo con attenzione e prova a rispondere, sul quaderno, alle domande seguenti.

I primi 1000 numeri primi

  1. Il numero 6833 è un numero primo?
    Come è rappresentato nel grafico?
  2. Il numero 7387 è un numero primo?
    Come è rappresentato nel grafico?
  3. Quanti numeri primi ci sono minori di 100?
  4. Quanti numeri primi ci sono compresi tra 100 e 200 (cioè contemporaneamente più grandi di 100 ma più piccoli di 200)?
  5. Quanti numeri primi ci sono compresi tra 200 e 300?
  6. Quanti numeri primi ci sono minori di 1000?
    Per rispondere, devi fare un calcolo: scrivi sul quaderno sia il calcolo che fai, sia il risultato.
  7. Quanti numeri primi ci sono compresi tra 1000 e 2000 (cioè contemporaneamente più grandi di 1000 ma più piccoli di 2000)?
    Per rispondere, devi fare un calcolo: scrivi sul quaderno sia il calcolo che fai, sia il risultato.
  8. Quanti numeri primi ci sono compresi tra 2000 e 3000 (cioè contemporaneamente più grandi di 1000 ma più piccoli di 2000)?
    Per rispondere, devi fare un calcolo: scrivi sul quaderno sia il calcolo che fai, sia il risultato.
  9. Dei primi 1000 numeri primi, quanti finiscono con la cifra 0?
  10. Dei primi 1000 numeri primi, quanti finiscono con la cifra 1?
  11. Dei primi 1000 numeri primi, quanti finiscono con la cifra 2?
  12. Dei primi 1000 numeri primi, quanti finiscono con la cifra 3?
  13. Dei primi 1000 numeri primi, quanti finiscono con la cifra 4?
  14. Dei primi 1000 numeri primi, quanti finiscono con la cifra 5?
  15. Dei primi 1000 numeri primi, quanti finiscono con la cifra 6?
  16. Dei primi 1000 numeri primi, quanti finiscono con la cifra 7?
  17. Dei primi 1000 numeri primi, quanti finiscono con la cifra 8?
  18. Dei primi 1000 numeri primi, quanti finiscono con la cifra 9?
  19. Secondo te, perché ho aggiunto questa domanda?

Compiti 1a 3-12-18

Le potenze di 10

Guarda con tanta attenzione questo video, intitolato Powers of ten, ossia Potenze di dieci. Ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza. Ne parleremo insieme lunedì; intanto… buona visione!

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

Compiti – 1C – 15/01/2018

Le potenze di 10 e gli ordini di grandezza

Guarda, con estrema attenzione, i video seguenti. In classe ti farò alcune domande in proposito.

I primi due link, rimandano allo stesso video: il primo è in Inglese, il secondo è doppiato in Italiano. Il video Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Il terzo link, invece, rimanda ad un “video interattivo” sempre sugli ordinidi grandezza.

Powers of ten

Potenze di dieci

Lo stesso video di prima, doppiato in Italiano!

La scala dell’universo

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

La parola “scala” in questo contesto è da intendersi come rapporto tra una grandezza reale e la sua rappresentazione grafica (non quindi come mezzo da salire o scendere!).

Compiti – 1C – 18/12/2017

Leggi il seguente racconto, con estrema attenzione, e guarda il video seguente.

In classe ti farò alcune domande in proposito.

Il video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahann.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

 

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

 

Compiti – 3C – 13/11/2017

Allenamento ai Giochi d’autunno

Qui sotto trovate allegati i testi dei quesiti assegnati per i Giochi d’autunno nel 2016.

Per martedì 14 novembe 2017, data in cui a scuola parteciperemo ai Giochi d’autunno di quest’anno, rispondi ai quesiti dal 5 al 9.

Rispondi su un foglio che mi consegnerai, affinché io possa valutare il lavoro da te svolto, scrivendo non solo le tue risposte, ma anche i ragionamenti (o i tentativi) che hai fatto per arrivare a quelle risposte.

Testi dei quesiti dei Giochi d'autunno per le categorie C1, C2, L1, L2 assegnati nel 2016
Titolo: Giochi d'autunno 2016 (0 click)
Etichetta: Testi dei quesiti dei Giochi d'autunno per le categorie C1, C2, L1, L2 assegnati nel 2016
Filename: gda_2016q.pdf
Dimensione: 141 KB

Compiti per l’estate 2017

Attenzione: libri e quaderni per l’anno prossimo

I libri di testo che abbiamo usato quest’anno ci serviranno anche all’inizio dell’anno prossimo. Per favore, non liberartene!
Se non hai terminato il quaderno di aritmetica, di geometria o di scienze, tienilo pure per l’anno prossimo.

Lettura

Leggi e recensisci uno dei 9 testi per la classe terza che trovi elencati su questo blog, sotto la categoria libri per la classe terza.
Ricordati di sceglierlo con attenzione, leggendo bene la presentazione dell’insegnante e i commenti dei ragazzi.
Le istruzioni su come scrivere la recensione sono contenute nell’articolo MA-TE leggi?

GeoGebra

Costruisci 5 files con GeoGebra seguendo le istruzioni date nell’articolo Omotetia per le vacanze. Rispondi alle domande contenute nell’articolo (o direttamente nei files, oppure sul quaderno).

Aritmetica

Sul libro Aritmetica 2:

  • a pagina A223 fai gli esercizi dal 7 al 9, eseguendo le divisioni;
  • a pagina A224 fai gli esercizi dal 27 al 29 eseguendo le divisioni;
  • a pagina A224 fai gli esercizi 34 e 35;
  • a pagina A224 fai gli esercizi dal 36 al 38 eseguendo le divisioni;
  • a pagina A230 fai tutti gli esercizi;
  • a pagina A235 fai gli esercizi dal 36 al 48;
  • a pagina A235 fai gli esercizi dal 49 al 51;
  • a pagina A238 fai il cruciverba;
  • a pagina A262 fai gli esercizi dal 99 al 105.

Geometria

Sul libro Geometria 2:

  • a pagina 213 fai tutti gli esercizi;
  • a pagina 219 fai gli esercizi numero 1 e 4;
  • a pagina 220 fai gli esercizi dal 10 al 14;
  • a pagina G224 fai gli esercisi numero 95, 96, 100, 101 e 102;
  • a pagina 229 fai il cruciverba;
  • a pagina G230 fai tutti gli esercizi;
  • a pagina G236 fai gli esercizi numero 22, 23 e 24;
  • a pagina G241 fai gli esercizi 95, 96 e 97;
  • a pagina G244 fai il cruciverba;
  • a pagina G245 fai tutti gli esercizi;
  • a pagina G253 fai gli esercizi 103, 104, 105, 107 e 108
  • a pagina G256 fai il cruciverba (l’1 verticale ti dico io che è TALETE).

Scienze

Guarda con attenzione i seguenti video, il primo molto breve, il secondo ben più lungo…

DNA, RNA e proteine

Ulisse, il piacere della scoperta. Le sorpese del DNA

Nell’articolo Video a proposito di DNA ne trovi proposti altri, in Inglese. Guardane almeno due a tua scelta anche di quelli, sempre con tanta tanta attenzione.

 

Omotetia per le vacanze

Uno dei compiti di queste vacanze, come sai, è costruire cinque diversi files con Geogebra e rispondere ad alcune domande.

Trovi di seguito le indicazioni da seguire per costruire i files e le domande a cui rispondere (meglio se creando una casella di testo all’interno del file di Geogebra o, in alternativa, sul quaderno). Mi raccomando: per ciascuna costruzione crea un diverso file e salva ciascuno di essi con un nome appropriato.

1. Costruire una prima omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro A e passante per O.
Con lo strumento Intersezione individua il punto D, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro D e passante per A.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro B e passante per O.
Con lo strumento Intersezione individua il punto E, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro E e passante per B.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro C e passante per O.
Con lo strumento Intersezione individua il punto F, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro F e passante per C.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

1.1. Qual è il centro dell’omotetia?
1.2. Qual è il valore di questa omotetia?
1.3. Si tratta di una omotetia inversa o diretta?
1.4. Si tratta di un ingrandimento o di una riduzione?

2. Costruire una seconda omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per A.
Con lo strumento Intersezione individua il punto D, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro D e passante per O.
Con lo strumento Intersezione individua il punto E, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro E e passante per D.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per B.
Con lo strumento Intersezione individua il punto F, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro F e passante per O.
Con lo strumento Intersezione individua il punto G, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro G e passante per F.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro O e passante per C.
Con lo strumento Intersezione individua il punto H, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro H e passante per O.
Con lo strumento Intersezione individua il punto I, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.
Con lo strumento Circonferenza – dati il centro e un punto disegna la circonferenza di centro I e passante per H.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

2.1. Qual è il centro dell’omotetia?
2.2. Qual è il valore di questa omotetia?
2.3. Si tratta di una omotetia inversa o diretta?
2.4. Si tratta di un ingrandimento o di una riduzione?

3. Costruire una terza omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Segmento traccia il segmento AO.
Con lo strumento Punto medio o centro individua il punto medio del segmento AO e chiamalo A’.

Con lo strumento Segmento traccia il segmento BO.
Con lo strumento Punto medio o centro individua il punto medio del segmento BO e chiamalo B’.

Con lo strumento Segmento traccia il segmento CO.
Con lo strumento Punto medio o centro individua il punto medio del segmento CO e chiamalo C’.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

3.1. Qual è il centro dell’omotetia?
3.2. Qual è il valore di questa omotetia?
3.3. Si tratta di una omotetia inversa o diretta?
3.4. Si tratta di un ingrandimento o di una riduzione?

4. Costruire una quarta omotetia e riconoscerla

Costruzione

Con lo strumento Punto disegna tre punti: A, B e C. Con lo strumento Poligono costruisci il triangolo ABC. Con lo strumento Punto disegna un punto O all’esterno del poligono.

Con lo strumento Retta traccia la retta passante per A e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento AO e chiamalo D.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per D.
Con lo strumento Intersezione individua il punto A’, ulteriore intersezione di questa circonferenza con la retta passante per A e per O.

Con lo strumento Retta traccia la retta passante per B e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento BO e chiamalo E.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per E.
Con lo strumento Intersezione individua il punto B’, ulteriore intersezione di questa circonferenza con la retta passante per B e per O.

Con lo strumento Retta traccia la retta passante per C e per O.
Con lo strumento Punto medio o centro individua il punto medio del segmento CO e chiamalo F.
Con lo strumento Circonferenza – dati il centro e un punto costruisci la circonferenza di centro O e passante per F.
Con lo strumento Intersezione individua il punto C’, ulteriore intersezione di questa circonferenza con la retta passante per C e per O.

Con lo strumento Poligono costruisci il triangolo A’B’C’.

Domande

Con il procedimento indicato, hai costruito un triangolo A’B’C’ che corrisponde al triangolo ABC attraveso una omotetia.

4.1. Qual è il centro dell’omotetia?
4.2. Qual è il valore di questa omotetia?
4.3. Si tratta di una omotetia inversa o diretta?
4.4. Si tratta di un ingrandimento o di una riduzione?

5. Osservare le figure omotetiche

Con lo strumento Poligono disegna un pentagono.
Con lo strumento Punto disegna un punto esterno al pentagono e chiamalo O.
Seleziona il comando Slider. Fai click in un punto qualunque della vista grafica. Ti comparirà una finestra di controllo in cui dovrai selezionare la voce Numero, scegliere come nome k e come intervallo da -5 a +5, lasciando come incremento 0,1. Dopo aver cliccato su Applica, ti compare nella vista grafica una linea con un punto. Selezionando lo strumento Muovi puoi trascinare questo punto sulla linea; trascinandolo, cambia il valore del numero k. Muovi il punto dello slider fino ad ottenere k = 2.

Seleziona lo strumento Omotetia, poi seleziona il poligono, il punto O e (nella finestrella che ti chiede il Rapporto) digita k (proprio la stessa lettera che hai scelto prima), infine clicca su OK.

A questo punto Geogebra ti ha disegnato il pentagono che è il trasformato del tuo tramite l’omotetia di centro O e di rapporto k = 2.
Ma se adesso selezioni il comando Muovi e trascini il punto sullo slider, cambia il rapporto dell’omotetia e di conseguenza la figura creata. Funziona?

Domande

5.1. Esiste un valore di k per il quale la figura trasformata coincide con la figura originale? Se sì, che valore è?
5.2. Esiste un valore di k per il quale la figura trasformata si riduce ad un punto? Se sì, che valore é?
5.3. Per quali valori di k la figura trasformata è più piccola dell’originale?
5.4. Per quali valori di k la figura trasformata è più grande dell’originale?
5.5. Per quali valori di k la figura trasformata è congruente all’originale?

Con lo strumento Muovi trascina il punto O dentro il pentagono. Poi fai variare il valore di k trascinando il punto sullo slider.

5.6. Possiamo dire che ciascun lato della figura trasformata è perpendicolare al lato corrispondente nella figura originale?
5.7. Possiamo dire che ciascun lato della figura trasformata è parallelo al lato corrispondente nella figura originale?

Compiti per il 12 aprile – seconda C

Guarda con attenzione i seguenti video:

Radice di due e i numeri irrazionali: vediamoli nella realtà (di Ornella Robutti)

Come nascono i numeri irrazionali (di Daniela Valenti)

Se ti interessa, puoi anche riguardare il cartone animato che abbiamo guardato in classe, andando sul sito Pitagora box.

Se poi hai ancora del tempo da dedicare alla radice di due e vuoi scoprire alcune curiosità che la riguardano, guarda anche questi video:

Storia e destino della radice quadrata di due (Benoît Rittaud)

Se la radice di due ti appassiona, puoi guardare anche questi video:
Root 2 – numberfilie

The square root of two: why it matters

What was up with Pythagoras?

Compiti per il 30 gennaio 2017, classe 2ª C

Osserva con attenzione il seguente esempio:

Ricopia ora sul quaderno il seguente esercizio, completando le didascalie.

Ricopia ora sul quaderno il seguente esercizio, completando sia i disegni che le didascalie.

Ora da solo cerca di disegnare un intero comodo e di rappresentare su di esso i seguenti quesiti, per trovarne la risposta, come abbiamo fatto qui sopra:

  • a che parte dell’intero corrisponde 1/6 di 1/4 dell’intero?
  • a che parte dell’intero corrispondono i 2/3 di 1/5 dell’intero?
  • a che parte dell’intero corrispondono i 3/4 di 1/2 dell’intero?
  • a che parte dell’intero corrisponde 1/5 di 1/3 dell’intero?

 

 

 

Compiti per il 16 gennaio 2017, classe 2ª C

Come abbiamo fatto in classe, trova un intero comodo e rappresenta su di esso le seguenti somme:

  • 3/8 + 3/12
  • 1/10 + 4/15
  • 5/14 + 1/4
  • 1/3 + 2/5

Se non ti ricordi o ti sembra di non aver capito bene come fare, puoi guardare questi video.

Compiti per il 20 gennaio 2017, classe 2ª C

Seguendo lo schema scritto qul quaderno e sotto riportato, scrivi la relazione dell’esperimento di scienze effettuato in classe il 23 dicembre scorso.

  1. Luogo preciso, data, ora.
  2. Materiali e strumenti utilizzati, con foto o disegno.
  3. Istruzioni ricevute.
  4. Procedimento seguito.
  5. Osservazioni effettuate (con i cinque sensi o con strumenti particolari); puoi aiutarti con foto o disegni.

Ricordati che ritirerò i quaderni e valuterò le relazioni di ciascuno.

Compiti per l’11 gennaio 2017, classe 2ª C

Ricopia sul quaderno le figure disegnate sul secondo volume del libro di geometria alle seguenti pagine:

  • pagina G90, figure dell’esercizio numero 3;
  • pagina G219, figure degli esercizi numero 1 e 4;
  • pagina G214 figure degli esercizi numero 1, 2, 3 e 4;
  • pagina G215, figure degli esercizi numero 5, 6, 7 e 8.

Di ciascuna figura disegnata sul tuo quaderno, misura l’area in centimetri quadrati, come abbiamo fatto in classe.

Compiti per il 9 gennaio 2017, classe 3ª C

Svolgi, sul quaderno i seguenti esercizi, tratti dal libro Contaci!, edizioni Zanichelli

Esercizio 1

Esercizio 2

Esercizio 3

Esercizio 4

Esercizio 5

Esercizio 6

Esercizio 7