Category Archives: Aritmetica

Compiti per la 1a C per ripassare le tabelline

tabellineinforma Imparare le tabelline a memoria è importante

Imparare a memoria le tabelline è importante. Punto. Su questo non ho intenzione di discutere.

1a

E la cosa davvero importante è, per esempio, sapere che 56 si può ottenere come 7 x 8, o sapere che 45 si ottiene come 5 x 9. La cosa importante è che, nella nostra testa, si formi una associazione automatica tra un numero e i fattori di cui esso è il prodotto.
Importante per chi? Importante per cosa?
Importante per tutti coloro che, dopo aver imparato a contare, vogliano capire un poco come funzionano i numeri e che cosa ci si può fare; paradossalmente, imparare a memoria le tabelline è importante soprattutto per tutti coloro che non amano fare i conti: più si capisce come sono composti i numeri, meno conti si hanno da fare, soprattutto meno divisioni si hanno da fare, divisioni che notoriamente sono le operazioni più difficili (o almeno il cui algoritmo è più complesso).

Ma, come dicevo, non ho intenzione di discutere sul fatto che studiare a memoria le tabelline sia importante.

Piuttosto l’argomento di questo articolo sarà: come studiare le tabelline a memoria?

Le tabelline

Se chiedo a un mio alunno di prima media di ripetermi la tabellina del 2, posso stare tranquilla che 7 volte su 10 mi risponde così: “Due, quattro, sei, otto, dieci, dodici…”
E i miei alunni possono stare tranquilli che, 10 volte su 10, li fermerò prima che arrivino in fondo e dirò loro che questa è una successione di numeri che, per carità, può essere utile conoscere, ma che non è la tabellina del 2.

Quando si ripete una tabellina, si devono ripetere non solo i risultati, ma anche i numeri di cui essi sono il prodotto, ossia i fattori. Nel caso della tabellina del 2, ad esempio, si deve ripetere. “Due per zero fa zero; due per uno fa due, due per due fa quattro, due per tre fa sei, due per quattro fa otto…”.

Qui sotto riporto le tabelline che sarebbe bene ciascuno conoscesse a memoria. Quelle essenziali sono, ovviamente, le tabelline fino al 10, ma conoscere a memoria anche quelle fino a 12 può essere una gran comodità.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Come imparare le tabelline

Le tabelline vanno imparate a memoria. E per imparare qualcosa bisogna far fatica. Non c’è trucco, non c’è inganno. Diffidate da chiunque vi voglia insegnare un modo per imparare senza fatica. In realtà, diffidate da chiunque sostenga che si può fare qualsiasi cosa di veramente bello senza fatica.

Detto questo, si possono imparare le tabelline risparmiando un po’ di fatica, a patto di usare un po’ la testa.

Qualsiasi cosa si voglia imparare a memoria (poesie, regole, date, formule, nomi…) ci sono alcuni metoti che possono aiutarci ad ottenere lo scopo che vogliamo raggiungere. Solitamente in classe, per aiutare i miei alunni a scoprire questi metodi (o meglio a prenderne coscienza, perché tanti li hanno già scoperti da tempo, quando diventano miei alunni), propongo lo studio di Un uccello uggioso. Qui di seguito cerco di elencare i suggerimenti che emergono.

Aiutarsi con le rime e il ritmo

Imparare a memoria Un uccello uggioso spesso risulta difficile perché, a differenza di alcune poesie e delle filastrocche, hanno poco ritmo e non hanno rime.
Qualcuno trova facile inserire le tabelline in canzoni; a mio parere è un artificio (questo) che – per come sono fatta io – complica le cose invece di semplificarle, ma credo che ciascuno di noi abbia un suo modo di imparare e che per qualcuno questo sistema possa essere d’aiuto.

Un buon tentativo di inserire le tabelline in canzoncine è stato fatto da Mela Music: si possono trovare su YouTube canzoncine relative alle tabelline da 1 a 10.

A dire la verità, l’unica moltiplicazione che io ho imparato grazie ad una canzone è “Sei per sette quarantadue, più due quarantaquattro!” Che canzone è?

Aiutarsi con la vista

Spesso quando si impara una poesia, chi ha buona memoria visiva si aiuta associando ogni verso o ogni strofa ad una immagine.
Anche con le tabelline si può fare qualcosa di simile, associando ogni prodotto all’area di un rettangolo.

5x3

5 x 3 = 15

8x3

8 x 3 = 24

Aiutarsi trovando delle regolarità

Quando bisogna imparare Un uccello uggioso, giova accorgersi che ogni riga incomincia con un aggettivo numerale, che tutte le parole di una stessa riga iniziano con la stessa lettera, che ogni riga contiene due parole in più di quante ne indica la prima parola, e così via.

Anche quando bisogna imparare le tabelline, accorgersi di alcune regolarità ci semplifica notevolmente il lavoro.

La moltiplicazione gode della proprietà commutativa.

Questo significa che, cambiando l’ordine dei fattori, il prodotto non cambia. Ma questo fortunatamento fa diminuire notevolmente il numero di operazioni da imparare: da 144 si passa a 78.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un qualsiasi fattore per 0 dà come risultato 0.

E sapendo questo, si elimina un’intera colonna di moltiplicazioni da imparare a memoria e le operazioni da imparare rimangono 66.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto tra 1 e un qualsiasi fattore dà come risultato il fattore stesso.

E sapendo questo, si elimina un’altra intera colonna di moltiplicazioni, cosicché quelle da imparare a memoria rimangono 55.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un numero per 10 è il numero che si ottiene accostando alle cifre del primo uno 0.

E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 45. Questo ti dice anche che ogni numero che termina con la cifra 0 è divisibile per 10.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un numero formato da una sola cifra per 11 è il numero che si ottiene accostando due cifre uguali a quella del primo fattore.

Ad esempio: 2 x 11 = 22, ma anche 7 x 11 = 77 e così via. Questo ti dice anche che ogni numero di due cifre formato da due cifre identiche è divisibile per 11.
E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 37.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto tra due numeri, di cui almeno uno pari, è pari.
Il prodotto tra due numeri dispari è dispari.

Questa osservazione non ti risparmia di dover imparare delle tabelline, ma ti permette un controllo sui risultati che ti vengono in mente.

Moltiplicare per 4 è come moltiplicare due volte per 2.

Ad esempio: 4 x 5 = 2 x (2 x 5) = 2 x 10 = 20. E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 35.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Moltiplicare per 9 è come moltiplicare due volte per 3.

Ad esempio: 2 x 9 = (2 x 3) x 3 = 6 x 3 = 18.

E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 34.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Attenzione ai falsi trucchi

Sapere le tabelline significa, lo dicevo all’inizio di questo articolo, creare nella nostra testa una immediata associazione tra due fattori e il loro prodotto. Questa associazione ci permette di passare dai fattori al prodotto in modo quasi istantaneo, ma anche (in modo altrettanto istantaneo) di passare dal prodotto ai fattori. Per questo motivo, quando interrogo sulle tabelline, le mie domande non sono del tipo “Quanto fa 7 x 9?”; piuttosto chiedo “Quali numeri danno per prodotto 63?”.

Alcuni trucchi per “imparare” le tabelline, quindi, sono dei falsi trucchi, perché ci permettono di passare dai fattori al prodotto ma non viceversa, in altre parole perché non creano delle associazioni immediate nella nostra testa tra i fattori e il prodotto.

Tra questi falsi trucchi ci sono, ad esempio, i seguenti:

  • imparare sequenze di numeri (due, quattro, sei, otto, dieci… tre, sei, nove, docici, diciotto…);
  • utilizzare sistemi che implicano l’uso delle dita e di conteggi vari, come quelli spiegati nel video seguente.

 

Allenare la memoria

Per imparare le 34 moltiplicazioni che sono rimaste a sfondo bianco nella nostra tabellina, bisogna ripeterle, ripeterle, ripeterle. Finché nella nostra testa l’associazione si crea. Ora, l’unica cosa che possiamo fare per aiutarci è creare delle situazioni in cui ripetere le tabelline sia il meno noioso possibile. Di modi ce ne sono tantissimi. Qui di seguito inserisco link ad alcuni altri siti che propongono giochi di questo tipo, ma un buon motore di ricerca vi permetterà di trovarne molti altri. Attenzione: alcuni di questi siti propongono tanta pubblicità: non lasciarti intrappolare!

Allora… buono studio e buon divertimento!

L’hotel 3-Per: imparare la tabellina del 3

Multiplication.com: tanti materiali e tanti giochi veramente divertenti

Osmosi delle idee: impara le tabelline lanciando palle di neve

Osmosi delle idee: impara le tabelline rompendo uova

Osmosi delle idee: impara le tabelline

Base 5: giocare a carte con le tabelline

Hooda Math: multiplication games

 

 

 

Compiti – 1C – 1/6/2018

Ordinamento tra frazioni

Come abbiamo fatto in classe, sfrutta il confronto tra queste frazioni e i numeri naturali per confrontarle tra loro (cioè decidere qual è la più grande).

Esempio

Voglio sapere se è più grande 17/5 o 25/6.

  1. Cerco qual è il più grande numero naturale prima di 17/5
    17:5 = 3 con il resto di 2
    quindi 17/5 = 3 + 2/5
  2. Cerco qual è il più grande numero naturale prima di 25/6
    25:6 = 4 con il resto di 1
    quindi 25/6 = 4 + 1/6
  3. Allora 3 < 17/5 < 4 < 25/6
    e quindi in particolare 17/5 < 25/6

Voglio sapere se è più grande 16/3 o 21/4.

  1. Cerco qual è il più grande numero naturale prima di 16/3
    16:3 = 5 con il resto di 1
    quindi 16/3 = 5 + 1/3
  2. Cerco qual è il più grande numero naturale prima di 21/4
    21:4 = 4 con il resto di 1
    quindi 21/4 = 5 + 1/4
  3. Allora 16/3 e 21/4 sono entrambi più grandi di 5 ma più piccoli di 6. Però so confrontare 1/3 e 1/4, perché hanno lo stesso numeratore, e so che 1/3 è più grande di 1/4. Allora
    5 + 1/3 > 5 + 1/4
    cioè 16/3 > 21/4

Compito

Stabilisci, per ciascuna delle seguenti coppie di frazioni, qual è la più grande, confrontandole con i numeri naturali che le precedono.

19/4 e 31/6

32/11 e 37/12

21/7 e 29/9

13/5 e 17/7

5×1000 o 5:1000?

Disclaimer

Non preoccupatevi: questo non è l’ennesimo articolo in cui qualcuno vi chiede di donargli il vostro 5 per mille. Non lo è, semplicemente per il fatto che io non sono un ente accreditato a ricevere il vostro 5 per mille, altrimenti, come tutti gli altri, mi farei in quattro per convincervi a darlo a me!

Scritture e significati

Il cosiddetto “5 per mille” è una misura fiscale che consente ai contribuenti (ossia coloro che in Italia pagano le tasse, o meglio le imposte) di destinare una quota di ciò che pagano come IRPEF (imposta sul reddito delle persone fisiche)  a enti che si occupano di attività di interesse sociale, come associazioni di volontariato e di promozione sociale, onlus, associazioni sportive che svolgono prevalentemente attività socialmente utili, enti di ricerca scientifica e sanitaria.

Non si tratta di pagare una imposta in più oltre a quella che già si paga allo Stato: si tratta solo (per il cittadino) di scegliere a quale ente o associazione devolvere una parte delle tasse che comunque dovrebbe pagare. Questa parte corrisponde, appunto, al 5 per mille dell’imposta sul reddito delle persone fisiche.

Quindi, se una persona paga allo Stato un’IRPEF di 4000 € e sceglie di destinare il 5 per mille all’associazione X, questa associazione riceverà i 5 millesimi di 4000 € ossia 20 € (eh già, perchè 4000 € : 1000 = 4 € che quindi è un millesimo dell’IRPEF pagata da questa persona, e 4 € x 5 = 20 € che sono i 5 millesimi del’IRPEF, ossia il 5 per mille).

Ora, la cosa “buffa” è che in tantissime delle pubblicità che enti e associazioni divulgano per convincere i contribuenti a sceglierle come destinatarie del 5 per mille, questa quota è rappresentata con questa scrittura: “5 x 1000”. Scrittura che, a chiunque, ricorda tutt’altra operazione matematica.

Dire “il 5 per 1000 di…” è come dire “i cinque millesimi di…” ossia “0,005 per…”.
Dire invece “il 5 x 1000 di…” è come dire “5000 volte…” ossia “5000 per…”.
Cambia qualcosa, no?

Ora, mi risulta difficile capire se si tratta di una “trovata pubblicitaria”, ossia se si tratti di una scelta consapevole, fatta per attirare l’attenzione del cittadino, oppure di una iniziale “svista” che ha poi preso piede ed è diventata di moda, oppure di un effetto del ritenere che tanto il cittadino medio non ha la più pallida idea di che cosa si stia parlando, e quindi usare un linguaggio preciso o un linguaggio confuso e confondente sia la stessa cosa.

I primi ad averla usata, a mio parere, l’hanno fatto pensando proprio di attirare l’attenzione scrivendo in un modo sbagliato. Ma tutti quelli che hanno “copiato” questa trovata, perché l’hanno fatto? Potrebbe essere lo stesso desiderio di brevità che fa scrivere “xché” al posto di “perché”, ma nemmeno questo mi convince molto: la scrittura corretta “5‰” è molto più breve di “5×1000”.

Sta di fatto che a me, come insegnante di matematica, sembra una pessima abitudine e sembra una scelta che rema contro il mio tentativo di rendere per tutti i miei alunni il linguaggio della matematica chiaro e comprensibile. Sì, perché scrivere due cose diversissime nello stesso modo è confondere le idee, e che qualcuno voglia confondere le idee mie e quelle dei miei alunni non mi piace affatto.
Ad ogni modo, per quanto mi riguarda, che i pubblicitari scelgano pure di mandare i loro messaggi nel modo che ritengono più opportuno; io spero solo che i miei alunni capiscano che cosa è il “5×1000”, che lo sappiano calcolare e che si rendano conto di quando lo stesso simbolo è usato per indicare cose molto diverse tra loro.

Caccia al tesoro fotografica

La mia proposta è questa: facciamo una caccia al tesoro fotografica e inseriamo qui sotto, come commenti all’articolo, le foto di cartelloni o inserzioni dove ci sia scritto 5×1000 al posto di 5/1000?

Non vale ripetere fotografie di strafalcioni già inserite, mentre volgono fotografie di strafalcioni analoghi, se ne trovate, su altre frazioni o percentuali (8 per mille, 2 per mille…), o su altri casi in cui simboli tipici della matematica vengono usati con significato diverso da quello che in matematica gli si attribuisce.

Attenzione: potete caricare immagini in formato jpg, gif, png; la dimensione massima del file può essere 25MB; non potete lasciare il commento vuoto (potreste scrivere, per esempio, dove e quando avete scattato la fotografia).

Io ho incominciato, adesso tocca a voi: buon lavoro!

Compiti – 1C – 15/01/2018

Le potenze di 10 e gli ordini di grandezza

Guarda, con estrema attenzione, i video seguenti. In classe ti farò alcune domande in proposito.

I primi due link, rimandano allo stesso video: il primo è in Inglese, il secondo è doppiato in Italiano. Il video Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Il terzo link, invece, rimanda ad un “video interattivo” sempre sugli ordinidi grandezza.

Powers of ten

Potenze di dieci

Lo stesso video di prima, doppiato in Italiano!

La scala dell’universo

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

La parola “scala” in questo contesto è da intendersi come rapporto tra una grandezza reale e la sua rappresentazione grafica (non quindi come mezzo da salire o scendere!).

Compiti – 1C – 18/12/2017

Leggi il seguente racconto, con estrema attenzione, e guarda il video seguente.

In classe ti farò alcune domande in proposito.

Il video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahann.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

 

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

 

Compiti per la prima C per ripassare le tabelline

tabellineinforma Imparare le tabelline a memoria è importante

Imparare a memoria le tabelline è importante. Punto. Su questo non ho intenzione di discutere.

E la cosa davvero importante è, per esempio, sapere che 56 si può ottenere come 7 x 8, o sapere che 45 si ottiene come 5 x 9. La cosa importante è che, nella nostra testa, si formi una associazione automatica tra un numero e i fattori di cui esso è il prodotto.
Importante per chi? Importante per cosa?
Importante per tutti coloro che, dopo aver imparato a contare, vogliano capire un poco come funzionano i numeri e che cosa ci si può fare; paradossalmente, imparare a memoria le tabelline è importante soprattutto per tutti coloro che non amano fare i conti: più si capisce come sono composti i numeri, meno conti si hanno da fare, soprattutto meno divisioni si hanno da fare, divisioni che notoriamente sono le operazioni più difficili (o almeno il cui algoritmo è più complesso).

Ma, come dicevo, non ho intenzione di discutere sul fatto che studiare a memoria le tabelline sia importante.

Piuttosto l’argomento di questo articolo sarà: come studiare le tabelline a memoria?

Le tabelline

Se chiedo a un mio alunno di prima media di ripetermi la tabellina del 2, posso stare tranquilla che 7 volte su 10 mi risponde così: “Due, quattro, sei, otto, dieci, dodici…”
E i miei alunni possono stare tranquilli che, 10 volte su 10, li fermerò prima che arrivino in fondo e dirò loro che questa è una successione di numeri che, per carità, può essere utile conoscere, ma che non è la tabellina del 2.

Quando si ripete una tabellina, si devono ripetere non solo i risultati, ma anche i numeri di cui essi sono il prodotto, ossia i fattori. Nel caso della tabellina del 2, ad esempio, si deve ripetere. “Due per zero fa zero; due per uno fa due, due per due fa quattro, due per tre fa sei, due per quattro fa otto…”.

Qui sotto riporto le tabelline che sarebbe bene ciascuno conoscesse a memoria. Quelle essenziali sono, ovviamente, le tabelline fino al 10, ma conoscere a memoria anche quelle fino a 12 può essere una gran comodità.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Come imparare le tabelline

Le tabelline vanno imparate a memoria. E per imparare qualcosa bisogna far fatica. Non c’è trucco, non c’è inganno. Diffidate da chiunque vi voglia insegnare un modo per imparare senza fatica. In realtà, diffidate da chiunque sostenga che si può fare qualsiasi cosa di veramente bello senza fatica.

Detto questo, si possono imparare le tabelline risparmiando un po’ di fatica, a patto di usare un po’ la testa.

Qualsiasi cosa si voglia imparare a memoria (poesie, regole, date, formule, nomi…) ci sono alcuni metoti che possono aiutarci ad ottenere lo scopo che vogliamo raggiungere. Solitamente in classe, per aiutare i miei alunni a scoprire questi metodi (o meglio a prenderne coscienza, perché tanti li hanno già scoperti da tempo, quando diventano miei alunni), propongo lo studio di Un uccello uggioso. Qui di seguito cerco di elencare i suggerimenti che emergono.

Aiutarsi con le rime e il ritmo

Imparare a memoria Un uccello uggioso spesso risulta difficile perché, a differenza di alcune poesie e delle filastrocche, hanno poco ritmo e non hanno rime.
Qualcuno trova facile inserire le tabelline in canzoni; a mio parere è un artificio (questo) che – per come sono fatta io – complica le cose invece di semplificarle, ma credo che ciascuno di noi abbia un suo modo di imparare e che per qualcuno questo sistema possa essere d’aiuto.

Un buon tentativo di inserire le tabelline in canzoncine è stato fatto da Mela Music: si possono trovare su YouTube canzoncine relative alle tabelline da 1 a 10.

A dire la verità, l’unica moltiplicazione che io ho imparato grazie ad una canzone è “Sei per sette quarantadue, più due quarantaquattro!” Che canzone è?

Aiutarsi con la vista

Spesso quando si impara una poesia, chi ha buona memoria visiva si aiuta associando ogni verso o ogni strofa ad una immagine.
Anche con le tabelline si può fare qualcosa di simile, associando ogni prodotto all’area di un rettangolo.

5x3

5 x 3 = 15

8x3

8 x 3 = 24

Aiutarsi trovando delle regolarità

Quando bisogna imparare Un uccello uggioso, giova accorgersi che ogni riga incomincia con un aggettivo numerale, che tutte le parole di una stessa riga iniziano con la stessa lettera, che ogni riga contiene due parole in più di quante ne indica la prima parola, e così via.

Anche quando bisogna imparare le tabelline, accorgersi di alcune regolarità ci semplifica notevolmente il lavoro.

La moltiplicazione gode della proprietà commutativa.

Questo significa che, cambiando l’ordine dei fattori, il prodotto non cambia. Ma questo fortunatamento fa diminuire notevolmente il numero di operazioni da imparare: da 144 si passa a 78.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un qualsiasi fattore per 0 dà come risultato 0.

E sapendo questo, si elimina un’intera colonna di moltiplicazioni da imparare a memoria e le operazioni da imparare rimangono 66.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto tra 1 e un qualsiasi fattore dà come risultato il fattore stesso.

E sapendo questo, si elimina un’altra intera colonna di moltiplicazioni, cosicché quelle da imparare a memoria rimangono 55.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un numero per 10 è il numero che si ottiene accostando alle cifre del primo uno 0.

E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 45. Questo ti dice anche che ogni numero che termina con la cifra 0 è divisibile per 10.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto di un numero formato da una sola cifra per 11 è il numero che si ottiene accostando due cifre uguali a quella del primo fattore.

Ad esempio: 2 x 11 = 22, ma anche 7 x 11 = 77 e così via. Questo ti dice anche che ogni numero di due cifre formato da due cifre identiche è divisibile per 11.
E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 37.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Il prodotto tra due numeri, di cui almeno uno pari, è pari.
Il prodotto tra due numeri dispari è dispari.

Questa osservazione non ti risparmia di dover imparare delle tabelline, ma ti permette un controllo sui risultati che ti vengono in mente.

Moltiplicare per 4 è come moltiplicare due volte per 2.

Ad esempio: 4 x 5 = 2 x (2 x 5) = 2 x 10 = 20. E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 35.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Moltiplicare per 9 è come moltiplicare due volte per 3.

Ad esempio: 2 x 9 = (2 x 3) x 3 = 6 x 3 = 18.

E sapendo questo, si eliminano altre moltiplicazioni, cosicché quelle da imparare a memoria rimangono 34.

0x0=0

0x1=0

0x2=0

0x3=0

0x4=0

0x5=0

0x6=0

0x7=0

0x8=0

0x9=0

0x10=0

0x11=0

1×0=0

1×1=1

1×2=2

1×3=3

1×4=4

1×5=5

1×6=6

1×7=7

1×8=8

1×9=9

1×10=10

1×11=11

2×0=0

2×1=2

2×2=4

2×3=6

2×4=8

2×5=10

2×6=12

2×7=14

2×8=16

2×9=18

2×10=20

2×11=22

3×0=0

3×1=3

3×2=6

3×3=9

3×4=12

3×5=15

3×6=18

3×7=21

3×8=24

3×9=27

3×10=30

3×11=33

4×0=0

4×1=4

4×2=8

4×3=12

4×4=16

4×5=20

4×6=24

4×7=28

4×8=32

4×9=36

4×10=40

4×11=44

5×0=0

5×1=5

5×2=10

5×3=15

5×4=20

5×5=25

5×6=30

5×7=35

5×8=40

5×9=45

5×10=50

5×11=55

6×0=0

6×1=6

6×2=12

6×3=18

6×4=24

6×5=30

6×6=36

6×7=42

6×8=48

6×9=54

6×10=60

6×11=66

7×0=0

7×1=7

7×2=14

7×3=21

7×4=28

7×5=35

7×6=42

7×7=49

7×8=56

7×9=63

7×10=70

7×11=77

8×0=0

8×1=8

8×2=16

8×3=24

8×4=32

8×5=40

8×6=48

8×7=56

8×8=64

8×9=72

8×10=80

8×11=88

9×0=0

9×1=9

9×2=18

9×3=27

9×4=36

9×5=45

9×6=54

9×7=63

9×8=72

9×9=81

9×10=90

9×11=99

10×0=0

10×1=10

10×2=20

10×3=30

10×4=40

10×5=50

10×6=60

10×7=70

10×8=80

10×9=90

10×10=100

10×11=110

11×0=0

11×1=11

11×2=22

11×3=33

11×4=44

11×5=55

11×6=66

11×7=77

11×8=88

11×9=99

11×10=110

11×11=121

Attenzione ai falsi trucchi

Sapere le tabelline significa, lo dicevo all’inizio di questo articolo, creare nella nostra testa una immediata associazione tra due fattori e il loro prodotto. Questa associazione ci permette di passare dai fattori al prodotto in modo quasi istantaneo, ma anche (in modo altrettanto istantaneo) di passare dal prodotto ai fattori. Per questo motivo, quando interrogo sulle tabelline, le mie domande non sono del tipo “Quanto fa 7 x 9?”; piuttosto chiedo “Quali numeri danno per prodotto 63?”.

Alcuni trucchi per “imparare” le tabelline, quindi, sono dei falsi trucchi, perché ci permettono di passare dai fattori al prodotto ma non viceversa, in altre parole perché non creano delle associazioni immediate nella nostra testa tra i fattori e il prodotto.

Tra questi falsi trucchi ci sono, ad esempio, i seguenti:

  • imparare sequenze di numeri (due, quattro, sei, otto, dieci… tre, sei, nove, docici, diciotto…);
  • utilizzare sistemi che implicano l’uso delle dita e di conteggi vari, come quelli spiegati nel video seguente.

 

Allenare la memoria

Per imparare le 34 moltiplicazioni che sono rimaste a sfondo bianco nella nostra tabellina, bisogna ripeterle, ripeterle, ripeterle. Finché nella nostra testa l’associazione si crea. Ora, l’unica cosa che possiamo fare per aiutarci è creare delle situazioni in cui ripetere le tabelline sia il meno noioso possibile. Di modi ce ne sono tantissimi. Qui di seguito inserisco link ad alcuni altri siti che propongono giochi di questo tipo, ma un buon motore di ricerca vi permetterà di trovarne molti altri. Attenzione: alcuni di questi siti propongono tanta pubblicità: non lasciarti intrappolare!

Allora… buono studio e buon divertimento!

Hooda Math: multiplication games (tanti giochi on-line)

Multiplication.com  (tanti materiali e tanti giochi on-line)

L’hotel 3-Per ( un trucco per imparare la tabellina del 3)

Osmosi delle idee: impara le tabelline lanciando palle di neve (un gioco on-line)

Osmosi delle idee: impara le tabelline rompendo uova

Osmosi delle idee: impara le tabelline

Base 5: giocare a carte con le tabelline (un gioco da fare con le carte da gioco)

 

 

 

 

Compiti per il 30 gennaio 2017, classe 2ª C

Osserva con attenzione il seguente esempio:

Ricopia ora sul quaderno il seguente esercizio, completando le didascalie.

Ricopia ora sul quaderno il seguente esercizio, completando sia i disegni che le didascalie.

Ora da solo cerca di disegnare un intero comodo e di rappresentare su di esso i seguenti quesiti, per trovarne la risposta, come abbiamo fatto qui sopra:

  • a che parte dell’intero corrisponde 1/6 di 1/4 dell’intero?
  • a che parte dell’intero corrispondono i 2/3 di 1/5 dell’intero?
  • a che parte dell’intero corrispondono i 3/4 di 1/2 dell’intero?
  • a che parte dell’intero corrisponde 1/5 di 1/3 dell’intero?

 

 

 

Compiti per il 16 gennaio 2017, classe 2ª C

Come abbiamo fatto in classe, trova un intero comodo e rappresenta su di esso le seguenti somme:

  • 3/8 + 3/12
  • 1/10 + 4/15
  • 5/14 + 1/4
  • 1/3 + 2/5

Se non ti ricordi o ti sembra di non aver capito bene come fare, puoi guardare questi video.

Compiti per il 1 dicembre 2016, classe 2ª C

Frazioni equivalenti

Ti propongo ancora due giochini on-line sulle frazioni equivalenti; poi torneremo a fare le persone serie.

Divertiti… almeno una mezz’oretta (meglio se giochi per tre giorni 10 minuti al giorno). Se ti appassioni, giocare più a lungo non ti farà male, ma abbi l’accortezza di non stare seduto troppo tempo davanti al computer o con il cellulare in mano. Interrompi il gioco ogni tanto e riprendilo dopo aver sgranchito la schiena e il collo ed aver riposato gli occhi.

MotoGP delle frazioni

Il poker delle frazioni

Se vuoi, puoi anche giocare ancora con quello dell’altra volta:

Colpisci le frazioni ridotte ai minimi termini

 

 

 

 

 

 

Compiti per il 28 novembre 2016, classe 2ª C

Frazioni equivalenti

Ti propongo un giochino on-line sulle frazioni equivalenti, in particolare sulla riduzione di una frazione ai minimi termini.

Divertiti… almeno una mezz’oretta (meglio se giochi per tre giorni 10 minuti al giorno). Se ti appassioni, giocare più a lungo non ti farà male, ma abbi l’accortezza di non stare seduto troppo tempo davanti al computer o con il cellulare in mano. Interrompi il gioco ogni tanto e riprendilo dopo aver sgranchito la schiena e il collo ed aver riposato gli occhi.

Colpisci le frazioni ridotte ai minimi termini

 

 

 

 

 

 

Compiti per il 24 novembre 2016, classe 2ª C

Frazioni equivalenti

Ti propongo due giochini on-line sulle frazioni equivalenti.

Prima studia bene quanto abbiamo scritto sul quaderno e ripensa agli esempi fatti: questo ti permetterà di ricordarti bene come fare a riconoscere quando due frazioni sono equivalenti.

Poi divertiti… almeno una mezz’oretta (meglio se giochi per tre giorni 10 minuti al giorno). Se ti appassioni, giocare più a lungo non ti farà male, ma abbi l’accortezza di non stare seduto troppo tempo davanti al computer o con il cellulare in mano. Interrompi il gioco ogni tanto e riprendilo dopo aver sgranchito la schiena e il collo ed aver riposato gli occhi.

Quiz sulle frazioni equivalenti

Pac-man delle frazioni equivalenti

 

 

 

 

 

Compiti per il 10 novembre 2016, classe 2ª C

Frazioni equivalenti

Ricopia sul quaderno questa figura (fai corrispondere ad ogni quadretto, un quadretto del tuo quaderno). Sono stati colorati di rosso 15 quadratini su 100, quindi la parte rossa rappresenta i 15/100 (quindici centesimi) del quadrato iniziale. Riesci a suddividere il quadrato grande in un altro numero di parti uguali, in modo da dire quali altre frazioni possono essere rappresentate dalla stessa parte rossa? Ricopia sul quaderno questa figura (fai corrispondere ad ogni quadretto, un quadretto del tuo quaderno). Sono stati colorati di verde 30 quadratini su 100, quindi la parte verde rappresenta i 30/100 (quindici centesimi) del quadrato iniziale. Riesci a suddividere il quadrato grande in un altro numero di parti uguali, in modo da dire quali altre frazioni possono essere rappresentate dalla stessa parte verde?

Compiti per il 16 maggio – prima C

I pattern dei multipli di 3

In classe, lavorando in gruppi, avete colorato i multipli di 3 in diversi schemi.

Abbiamo poi, insieme, osservato questo:

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 12 numeri.

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 12 numeri. I multipli di 3 risultano messi in striscie verticali. Vi ho chiesto: quali altri potrebbero essere i numeri contenuti nella prima riga affinché i multipli di 3 siano sempre in striscie verticali? Alcuni di voi, a ragione, hanno detto che questo accade ogni volta che l’ultimo numero della prima riga è un multiplo di 3. Le stesse striscie verticali si presentavano infatti nello schema che aveva 30 numeri per riga e si presentano in quest’altro schema, che ha 9 numeri per riga (12, 30 e 9 sono multipli di 3).

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 9 numeri.

In classe abbiamo poi osservato questi altri due schemi:

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 7 numeri.

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 10 numeri.

Anche in questi schemi i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga del primo ci sono 7 numeri, in ogni riga del secondo ce ne sono 10. I multipli di 3 risultano messi in file che qualcuno di voi ha caratterizzato con l’espressione [sinistra 1, giù 1] che ricorda quelle che noi abbiamo usato per il coefficiente angolare delle rettee che sta a significare che se parti da un quadretto colorato, vai a sinistra di 1 e scendi di 1, trovi un altro quaderetto colorato.

Vi ho chiesto: quali altri potrebbero essere i numeri contenuti nella prima riga affinché i multipli di 3 siano sempre disposti in questo modo? Alcuni di voi hanno detto che questo accade ogni volta che l’ultimo numero della prima riga NON è un multiplo di 3. Ma io non sono d’accordo. E per sostenere la mia ragione ti faccio vedere quest’altro schema, che in classe non abbiamo visto, ma che è quello a cui ho pensato per dire che non ero d’accordo:

In questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 14 numeri.

Anche in questo schema i numeri naturali sono inseriti in successione, partendo da 1; in ogni riga ci sono 14 numeri. Anche 14 non è un multiplo di 3, eppure i multipli di 3 risultano messi in file che non seguono la stessa inclinazione di quelle degli schemi che ho colorato in giallo. Potremmo caratterizzare le file di quadratini colorati con l’espressione [destra 1, giù 1] che ricorda quelle che noi abbiamo usato per il coefficiente angolare delle rette e che sta a significare che se parti da un quadretto colorato, vai a destra di 1 e scendi di 1, trovi un altro quaderetto colorato. 

La domanda è: posto che se l’ultimo numero della prima riga è un multiplo di 3, tutti i multipli di 3 risultano messi in striscie verticali (come negli schemi colorati di verde), quando invece l’ultimo numero della prima riga NON è un multiplo di 3, c’è modo di sapere come risultano disposti tutti i multipli di 3?
In altre parole: se l’ultimo numero della prima riga NON è un multiplo di 3, c’è modo di sapere (guardando solo questo ultimo numero) se i multipli di 3 saranno disposti con coefficiente angolare [sinistra 1, giù1] o [con coefficiente angolare destra 1, giù1]?
In altre parole ancora: se l’ultimo numero della prima riga NON è un multiplo di 3, c’è modo di sapere (guardando solo questo ultimo numero) se i multipli di 3 saranno disposti su file come quelle degli schemi colorati in giallo o su file come quelle dello schema colorato in rosa?

E se proprio poi volete esagerare: in schemi di questo tipo (cioè con i numeri naturali inseriti in successione partendo da 1), è possibile che i multipli di 3 siano messi in qualche modo diverso (sempre a seconda di quale è l’ultimo numero della prima riga), che non sia come quelli verdi, né come quelli gialli, né come quello rosa?

Compiti per l’11 maggio – prima C

Una animazione

factor_clock

Osserva l’animazione riportata in questo sito.

È molto lunga: non è necessario che la guardi tutta (anche se potrebbe essere carino scoprire fin dove arriva!).

È però necessario che la guardi con estrema attenzione e che cerchi di rispondere a questa domanda: che cosa vorrà rappresentare questa animazione?

Compiti per il 31 marzo – prima C

Gli ordini di grandezza

Come compito per giovedì 31 marzo vi chiedo tre cose:

  1. leggere con estrema attenzione la pagina A228 del vostro libro di testo;
  2. guardare con estrema attenzione il video Powers of ten incorporato in questo articolo;
  3. guardare con estrema attenzione il video interattivo The scale of the universe seguendo il link che troverete in fondo a questo articolo.

Giovedì discuteremo insieme di questi video, delle sensazioni che hanno suscitato in voi e degli aspetti matematici in essi contenuti che ancora non vi sono noti (li trovate?)

Powers of ten

Questo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

The scale of the universe

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Compiti per il 10 marzo – prima C

In classe vi ho raccontato la storia del re malinconico e dell’inventore degli scacchi: qui la riporto così come è scritta nel libro L’uomo che sapeva contare, di Malba Tahan. Leggete questo brano e poi guardate con attenzione il video che rappresenta i chicchi di grano che sarebbero stati necessari per soddisfare la richiesta dell’inventore degli scacchi.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo questeparole, Re Iadava esclamò: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane, insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia, ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Potenze

In questo articolo ho raccolto link ad alcuni video che illustrano in modo potentissimo il concetto di potenza…

Il primo video si riferisce ad una leggenda, che come molte leggende è raccontata in molte versioni diverse, che narra la storia dell’inventore del gioco degli scacchi. Qui riporto la versione contenuta nel libro L’uomo che sapeva contare, di Malba Tahan.

Un giorno il Re fu informato che un giovane bramino, umile e povero, chiedeva di essere ricevuto. In realtà aveva già fatto questa richiesta diverse volte, ma il Re aveva sempre rifiutato, sostenendo che il suo spirito non era abbastanza forte da permettergli di ricevere visite. Tuttavia questa volta gli concesse udienza e ordinò che il giovane straniero venisse condotto al suo cospetto. Una volta giunto alla sala del trono, il bramino fu interrogato, secondo le regole del cerimoniale, da uno dei nobili del Re.”Chi sei? Da dove vieni? Cosa desideri da colui che, per volere di Visnù, è Re e signore di Taligana?”. “Mi chiamo Lahur Sessa” rispose il giovane bramino,” e vengo dal villaggio di Namir, a trenta giorni di cammino da questa bella città. Abbiamo avuto notizia, là dove vivo, che il nostro Re è afflitto da profondo dolore, che egli è amareggiato dalla perdita del figlio che gli fu strappato nelle vicende della guerra. “È terribile”, mi sono detto, “che il nostro nobile sovrano si isoli completamente nel suo palazzo, come un cieco bramino che si abbandona alla sua pena; ho quindi pensato che sarebbe quanto mai opportuno inventare un gioco che possa distrarlo e aprire il suo cuore a nuovi piaceri. È questo l’umile dono che reco al nostro Re Iadava”. Sessa mise davanti al Re una tavola divisa in sessantaquattro caselle di uguali dimensioni. Su di essa erano disposti due gruppi di pezzi, gli uni bianchi e gli altri neri. Le figure di questi pezzi erano allineate simmetricamente sulla scacchiera e vi erano strane regole che governavano i loro movimenti. Il Re Iadava fu molto interessato alle regole del gioco e si mise a far domande all’inventore. Ad un certo punto il Re notò con grande sorpresa che i pezzi, dopo tutte le mosse fatte, erano spiegati esattamente come nella battaglia di Dacsina . “Osserva” gli disse allora il giovane bramino, “che, per vincere la battaglia, questo nobile guerriero deve sacrificarsi…” E gli indicò proprio il pezzo che il Re aveva posto a capo delle schiere impegnate nel cuore della lotta. Il saggio Sessa volle così mostrare che talvolta la morte di un principe è necessaria per assicurare pace e libertà al suo popolo. Udendo queste, Re Iadava esclamò…: “Dimmi allora cosa desideri tra ciò che sono in grado di darti, così potrai vedere quanto grande può essere la mia riconoscenza verso coloro che la meritano.” Sessa disse di non volere alcuna ricompensa perché questa era la felicità di aver guarito il Re. Questi sorrise e, incapace di credere alla sincerità del giovane insistette: “Rifiutare la mia offerta sarebbe non solo una scortesia ma disobbedienza”. Sessa allora per non essere scortese, chiese di essere pagato in chicchi di grano. Il Re stupito dalla strana moneta chiese in quale modo poteva ricompensarlo.”È facilissimo” spiegò Sessa “mi darai un chicco di grano per la prima casella della scacchiera, due per la seconda, quattro per la terza, otto per la quarta e così via, raddoppiando la quantità ad ogni casella fino alla sessantaquattresima e ultima.” Il re rise di questa richiesta, dicendogli che poteva avere qualunque cosa e invece si accontentava di pochi chicchi di grano. Il giorno dopo i matematici di corte andarono dal re e gli dissero che per adempiere alla richiesta del monaco non sarebbero bastati i raccolti di tutto il regno per ottocento anni. Lahur Sessa aveva voluto in questo modo insegnare al re che una richiesta apparentemente modesta poteva nascondere un costo enorme. Comunque, una volta che il re lo ebbe capito, il bramino ritirò la sua richiesta e divenne il governatore di una delle province del regno.

Il secondo video, intitolato Powers of ten, ossia Potenze di dieci, ci aiuta a riflettere proprio sulle potenze di questo numero per noi così importante (essendo il nostro sistema di numerazione in base 10) e sugli ordini di grandezza.

Se con l’Inglese avete poca confidenza, potete guardarlo anche doppiato in Italiano!

Infine in questo video interattivo, intitolato La scala dell’universo, devi scegliere la lingua che preferisci e seguire le istruzioni su come utilizzare il mouse e vedrai il mondo da punti di vista sempre diversi!

Se l’aritmetica fosse una costruzione LEGO

Scomposizione dei numeri composti fino a 60 in mattoncini LEGO

Con i numeri primi si possono costruire tutti i numeri composti (ossia tutti i numeri naturali che non siano primi, esclusi lo 0 e l’1). Da qui all’idea che i numeri primi siano come i mattoncini LEGO dell’aritmetica la strada è breve.

Nel documento allegato ho unito un’idea della maestra Rita Bartole (La Ritabella) con un’idea del professor Paolo Dall’Aglio (Fattorizzazioni con i LEGO): spero che possa essere utile almeno a qualcuni dei miei alunni!

Se rappresentiamo ogni numero primo con un mattoncino LEGO di un colore diverso, i numeri composti diventano torri coloratissime...
Titolo: I numeri primi sono i mattoncini LEGO dell'aritmetica (0 click)
Etichetta: Se rappresentiamo ogni numero primo con un mattoncino LEGO di un colore diverso, i numeri composti diventano torri coloratissime...
Filename: lego_primi-2.pdf
Dimensione: 286 KB