Tag Archives: videotutorial

Compiti per il 30 maggio – prima C

Altezze e ortocentro di un triangolo

Disegna, con GeoGebra, un triangolo, le sue altezze e il suo ortocentro. Fammi avere il tuo file tramite posta elettronica o salvata su una chiavetta usb.

Puoi guardare il videotutorial incorporato alla fine di questo articolo, ovviamente. Altrettanto ovviamente potrai scegliere i colori che preferisci.

Una volta terminata la costruzione, fai misurare a GeoGebra gli angoli del tuo triangolo. Muovi i vertici del triangolo e osserva dove va a finire l’ortocentro quando il triangolo è acutangolo, ottusangolo o rettangolo. Per “dove va a finire” intendo in particolare se è un punto interno al triangolo, esterno al triangolo o proprio appartenente alla linea spezzata che delimita il triangolo.

Fai la stessa cosa con i files che hai precedentemente costruito con le bisettrici, gli assi e le mediane dei triangoli.

Copia sul un foglio (intestato con il tuo nome e il tuo cognome, perché me lo consegnerai) tre tabelle simili a queste, compilandole in base alle tue osservazioni (scrivendo “sì” o “no” in ciascuna casella):

Ortocentro

L’ortocentro è il punto di incontro delle altezze (o dei loro prolungamenti) di un triangolo.

  è interno? è esterno? è sulla spezzata?
triangoli acutangoli      
triangoli ottusangoli      
triangoli rettangoli      

Baricentro

Il baricentro è il punto d’incontro delle mediane di un triangolo.

  è interno? è esterno? è sulla spezzata?
triangoli acutangoli      
triangoli ottusangoli      
triangoli rettangoli      

Incentro

L’incentro è il punto d’incontro delle bisettrici di un triangolo.

  è interno? è esterno? è sulla spezzata?
triangoli acutangoli      
triangoli ottusangoli      
triangoli rettangoli      

Circocentro

Il circocentro è il punto d’incontro degli assi di un triangolo.

  è interno? è esterno? è sulla spezzata?
triangoli acutangoli      
triangoli ottusangoli      
triangoli rettangoli      

Compiti per il 9 maggio – prima C

Bisettrici e incentro di un triangolo

Disegna, con GeoGebra, un triangolo, le sue bisettrici e il suo incentro.

Se vuoi scoprire perché l’incentro si chiama proprio così, prosegui con la costruzione della circonferenza inscritta, seguendo le istruzioni date in questo videotutorial:

Assi e circocentro di un triangolo

Disegna, con GeoGebra, un triangolo, i suoi assi e il suo circocentro.

Se vuoi scoprire perché il circocentro si chiama proprio così, prosegui con la costruzione della circonferenza circoscritta, seguendo le istruzioni date in questo videotutorial:

Compiti per il 27 aprile – prima C

Triangoli con GeoGebra

Innanzitutto, per chi non avesse ancora scaricato GeoGebra, questo il link al sito ufficiale, da cui scaricare il programma per installarlo sul proprio dispositivo. Come vi ho già più volte detto, vi prego, in questa prima fase di ricerca su internet ed installazione sul vostro dispositivo, di farvi aiutare da un adulto.

Il primo video incorporato in questo articolo ti ricorda come disegnare con GeoGebra triangoli isosceli, equilateri e rettangoli.
Il secondo video incorporato in questo articolo ti insegna cosa sono e come disegnare con GeoGebra triangoli emiequilateri e triangoli rettangoli isosceli.

Puoi spedirmi il tuo file al mio indirizzo di posta elettronica o consegnarmelo in classe su una chiavetta usb.

Compito

Crea un file con GeoGebra; dagli nome “cognome-nome-1c-triangoli”; l’estensione del file dovrà essere “ggb”. Sul file dovanno essere presenti i disegni e le risposte in forma completa (in modo tale che possa capire di che cosa stai parlando anche qualcuno che non ha letto le domande).

Disegna un triangolo isoscele (ossia un triangolo con due lati uguali).
Fai misurare a GeoGebra i suoi tre angoli interni. Che cosa noti?

Disegna un triangolo equilatero (ossia un triangolo con tre lati uguali).
Fai misurare a GeoGebra i suoi tre angoli interni. Che cosa noti?

Disegna un triangolo rettangolo, partendo da uno dei suoi cateti. Non nascondere le linee di costruzione.
Fai misurare a GeoGebra l’angolo retto.

Disegna un triangolo rettangolo, partendo dalla sua ipotenusa. Non nascondere le linee di costruzione.
fai misurare a GeoGebra l’angolo retto di questo triangolo.

Disegna un triangolo emiequilatero.
Fai misurare a GeoGebra i suoi angoli. Che cosa noti?

Disegna un triangolo rettangolo isoscele.
Fai misurare a GeoGebra i suoi angoli. Che cosa noti?

Come disegnare triangoli isosceli, equilateri e rettangoli

Come disegnare triangoli emiequilateri e triangoli rettangoli isosceli

Compiti per il 19 aprile – seconda C

Il teorema di Pitagora: configurazione e verifica numerica

Innanzitutto, per chi non avesse ancora scaricato GeoGebra, questo il link al sito ufficiale, da cui scaricare il programma per installarlo sul proprio dispositivo. Come vi ho già più volte detto, vi prego, in questa prima fase di ricerca su internet ed installazione sul vostro dispositivo, di farvi aiutare da un adulto.

Compito sul quaderno

Sul tuo quaderno di geometria, disegna tre triangoli rettangoli, i quadrati costruiti sui loro cateti e il quadrato costruito sulle loro ipotenuse.

Compito con GeoGebra

Crea un file con GeoGebra; dagli nome “cognome-nome-2c-pitagora”; l’estensione del file dovrà essere “ggb”.

Al termine del tuo lavoro, puoi spedirmi il file al mio indirizzo di posta elettronica o consegnarmelo in classe su una chiavetta usb. Il tuo lavoro verrà valutato. Considererò la correttezza del nome, la correttezza della costruzione in tutte le sue parti, la pulizia della costruzione (linee di costruzione nascoste, scelta dei colori).

Disegna un triangolo rettangolo. Disegna i quadrati costruiti sui suoi cateti e il quadrato costruito sulla sua ipotenusa. Fai verificare a GeoGebra che la somma delle aree dei quadrati costruiti sui cateti sia uguale all’area del quadrato costruito sull’ipotenusa. Ti stai chiedendo come fare? Guarda il videotutorial qui sotto e troverai la risposta alla tua domanda!

Come disegnare la configurazione del teorema di Pitagora e farne una verifica numerica

Compiti per il 15 aprile – prima C

Diagonali dei poligoni con GeoGebra

Innanzitutto, per chi non avesse ancora scaricato GeoGebra, questo il link al sito ufficiale, da cui scaricare il programma per installarlo sul proprio dispositivo. Come vi ho già più volte detto, vi prego, in questa prima fase di ricerca su internet ed installazione sul vostro dispositivo, di farvi aiutare da un adulto.

I video incorporati in un precedente articolo ti mostrano come disegnare un poligono e come inserire un testo in un file di GeoGebra. Puoi sfruttali per poter eseguire anche questo compito. Il video incorporato in questo articolo ti ricorda come disegnare un poligono e ti spiega come disegnare le sue diagonali (ossia i segmenti che congiungono i vertici non consecutivi di un poligono).

Puoi spedirmi il tuo file al mio indirizzo di posta elettronica o consegnarmelo in classe su una chiavetta usb.

Compito

Crea un file con GeoGebra; dagli nome “cognome-nome-1c-diagonali”; l’estensione del file dovrà essere “ggb”. Sul file dovanno essere presenti i disegni e le risposte in forma completa (in modo tale che possa capire di che cosa stai parlando anche qualcuno che non ha letto le domande).

Disegna un triangolo.
Disegna tutte le diagonali che riesci a trovare di questo triangolo.
Quante diagonali partono da ciascun vertice?
Quante sono in tutto le diagonali?

Disegna un quadrilatero.
Disegna tutte le diagonali che riesci a trovare di questo quadrilatero.
Quante diagonali partono da ciascun vertice?
Quante sono in tutto le diagonali del quadrilatero?
Muovi un vertice, in modo che il quadrilatero diventi concavo. Il numero delle sue diagonali cambia? Come?

Disegna un pentagono (ossia un poligono con 5 lati).
Disegna tutte le diagonali che riesci a trovare di questo pentagono.
Quante diagonali partono da ciascun vertice?
Quante sono in tutto le diagonali del pentagono?
Muovi un vertice, in modo che il pentagono diventi concavo. Il numero delle sue diagonali cambia? Come?

Disegna un esagono (ossia un poligono con 6 lati).
Disegna tutte le diagonali che riesci a trovare di questo esagono.
Quante diagonali partono da ciascun vertice?
Quante sono in tutto le diagonali dell’esagono?
Muovi un vertice, in modo che l’esagono diventi concavo. Il numero delle sue diagonali cambia? Come?

Disegna un ettagono (ossia un poligono con 7 lati).
Disegna tutte le diagonali che riesci a trovare di questo ettagono.
Quante diagonali partono da ciascun vertice?
Quante sono in tutto le diagonali dell’ettagono?
Muovi un vertice, in modo che l’ettagono diventi concavo. Il numero delle sue diagonali cambia? Come?

Come disegnare le diagonali di un poligono

Compiti per l’8 aprile – prima C

Poligoni con GeoGebra

Innanzitutto, per chi non avesse ancora scaricato GeoGebra, questo il link al sito ufficiale, da cui scaricare il programma per installarlo sul proprio dispositivo. Come vi ho già più volte detto, vi prego, in questa prima fase di ricerca su internet ed installazione sul vostro dispositivo, di farvi aiutare da un adulto.

I video incorporati in questo articolo ti mostrano come disegnare un poligono e come inserire un testo in un file di GeoGebra. Sfruttali per poter eseguire il compito.

Puoi spedirmi il tuo file al mio indirizzo di posta elettronica o consegnarmelo in classe su una chiavetta usb.

Compito

Crea un file con GeoGebra; dagli nome “cognome-nome-1c-poligoni-1”; l’estensione del file dovrà essere “ggb”.

Disegna un triangolo.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che non ha letto le domande):

  • può un triangolo essere stellato?
  • può un triangolo essere concavo?

Disegna un quadrilatero.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che le ha lette):

  • può un quadrilatero essere stellato?
  • in quanti punti (al massimo) si possono incrociare i lati di un quadrilatero stellato?
  • può un quadrilatero essere concavo?
  • quanti angoli concavi (al massimo) può avere un quadrilatero concavo?

Disegna un pentagono.
Muovi, in successione, ciascuno dei suoi vertici e scrivi le tue risposte alle seguenti domande (in forma completa, in modo tale che possa capire di che cosa stai parlando anche qualcuno che le ha lette):

  • può un pentagono essere stellato?
  • in quanti punti (al massimo) si possono incrociare i lati di un pentagono stellato?
  • può un pentagono essere concavo?
  • quanti angoli concavi (al massimo) può avere un pentagono concavo?

Come disegnare un poligono

Come inserire un testo